
Submitted to the Technical Communications of the International Conference on Logic Programming (ICLP’10)
http://www.floc-conference.org/ICLP-home.html

MODELS FOR TRUSTWORTHY SERVICE AND PROCESS ORIENTED
SYSTEMS

HUGO A. LÓPEZ 1

Programming, Logic and Semantics group, IT University.
Rued Langgaards Vej 7, 2300 Copenhagen, Denmark
E-mail address: lopez@itu.dk

URL: http://www.itu.dk/~hual/

Abstract. Service and process-oriented systems promise to provide more effective busi-
ness and work processes and more flexible and adaptable enterprise IT systems. However,
the technologies and standards are still young and unstable, making research in their the-
oretical foundations increasingly important. Our studies focus on two dichotomies: the
global/local views of service interactions, and their imperative/declarative specification.
A global view of service interactions describes a process as a protocol for interactions, as
e.g. an UML sequence diagram or a WS-CDL choreography. A local view describes the
system as a set of processes, e.g. specified as a π -calculus or WS-BPEL process, imple-
menting each participant in the process. While the global view is what is usually provided
as specification, the local view is a necessary step towards a distributed implementation. If
processes are defined imperatively, the control flow is defined explicitly, e.g. as a sequence
or flow graph of interactions/commands. In a declarative approach processes are described
as a collection of conditions they should fulfill in order to be considered correct. The two
approaches have evolved rather independently from each other. Our thesis is that we can
provide a theoretical framework based on typed concurrent process and concurrent con-
straint calculi for the specification, analysis and verification of service and process oriented
system designs which bridges the global and local view and combines the imperative and
declarative specification approaches, and can be employed to increase the trust in the de-
veloped systems. This article describes our main motivations, results and future research
directions.

1. Introduction

As recently pointed out by the ICT theme of EU Seventh Framework Programme (FP7),
the need of trustworthy and pervasive services infrastructure is considered one of the three
mayor challenges in ICT for the next ten years. The “future internet” proposes questions
in terms of scalability, mobility, flexibility, security, trust and robustness to the more than
thirty years old current Internet architecture. A vast landscape of application and ever-
changing requirements and environments must be supported, and new ways of interaction
must be devised, coping with safety and reliability in their coordination methods.

1998 ACM Subject Classification: F.3.2: Semantics of Programming Languages, F.4.3: Formal
Languages.

Key words and phrases: Concurrent Constraint Calculi, Session Types, Logic, Service and Process ori-
ented computing.

c© H. A. López
Confidential — submitted to ICLP



2 H. A. LÓPEZ

The line of research investigating such questions has been constantly expanding since
the early nineties, both combining approaches from the academia and the industry. As re-
sult of such efforts, its been normally hard to differentiate between similar derived fields, like
Business Processes, Workflow technologies and Service Oriented Computing. A Business
Process is the set of steps executed in order to fulfill a (business) goal. Business processes
have always been at the hearth of companies interests, and the obvious goal has been to
develop better, cheaper, and faster processes, incrementing the profits of the company.
Workflows came as an initial response for the need of proper descriptions of business pro-
cesses, providing a framework for the specification and automation of processes by means of
activities respecting a business logic. They aim at integrating coarse-grained components
and have a single place where the business logic is specified. Furthermore, Service Oriented
Computing (SOC) opens a new different horizon by distributing the places where the busi-
ness logic is defined: now, small process units (services) can be shared between different
organizations, so each of them can fulfill their business goals by reusing and outsourcing
services.

Giving the intrinsic complexity when analyzing services in distributed environments,
one normally use different abstractions to describe and analyse services. One of such ab-
stractions deals with the the study of the concurrent nature of services. Process calculi are
formal languages conceived for the description and analysis of concurrent systems. As such,
the goal of a process calculus is to provide a rigorous framework where complex systems can
be accurately analyzed, including reasoning techniques (type systems, specification logics)
to verify essential properties of a system. The term structured communications [9] refers to
the branch of process calculi devoted to the analysis of interactions between services. On a
calculus for structured communications, one considers the computation within a service as
an atomic activity, and focus the core of the analysis in the interactions between services.

One of the most important aspects when modelling services relate to the notion of
trustworthiness, or the extent to which users believe that the systems behave correctly. A
safe system is one in which a property considered harmful for the life of the system would
never happen, like for instance the disclosure of the private credentials of the manager to a
thief.

Despite of being such a young trend, different but interrelated views for the analysis
of service oriented systems have been proposed. We can enclose such approaches in two
dichotomies: global/local views of services, and imperative/declarative specifications. In
the first dichotomy, either one describe the system as the exchange of messages between
different participants, or one consider the system as the composition of the local behaviours
of each participant. In this first view, known as choreography [4, 5], one consider the system
as a whole, taking care only of the interfaces that participants use when interacting to the
outside world. In the second view, known as orchestration [14, 5], one model the system
as perceived by the eyes of each participant (so-called end-point), sending and receiving
messages but not knowing which other actors are present in a communication. As recently
presented, choreographies and orchestrations can be operationally correspondent, and one
can either project a choreography to generate distributed orchestrations that implements
it, or lift a process specification done in an orchestrated manner to describe its respective
choreography [5].

As a simple example of such duality, take a simplified version of an online booking
scenario: Here, the customer interacts with the airline company AC using its service ob, such
interaction will be labelled by an identifier (referred here as a session). The customer and



MODELS FOR TRUSTWORTHY SERVICE AND PROCESS ORIENTED SYSTEMS 3

AC can interact in more than one manner, requiring sessions to be unique and independent
from each other. In this case, we will use sessions labelled k1, k2 to identify the direction
of the communication: k1 from Customer to the AC and k2 for its dual. Once sessions are
established, the customer will request the company about a flight offer with his booking
data, along the session key k1. The airline company will process the customer request and
will send a reply back with an offer using the session key k2. The customer will eventually
accept the offer, sending back an acknowledgment to the airline company using k1. The
description of this protocol in a choreographic way will describe the sequence of interactions
between Customer and AC, for instance: Customer → AC : ob(k1, k2) will create sessions
k1 and k2 between Customer and AC, and Customer → AC : k1〈booking, x〉 will describe
the communication of the booking value using the session key k1 from Customer to AC.
The rest of the specification representing this protocol can be described as follows:

Customer → AC : ob(k1, k2).

Customer → AC : k1〈booking, x〉.
AC → Customer : k2〈offer, y〉.
Customer → AC : k1〈accept, z〉

In an orchestrated version of the above example, one might consider the system as the
concurrent execution of processes implementing the actions for Customer and AC. Here,
processes will communicate via session establishment and message passing, among other
actions. Following the notation from [9], the concurrent execution of request ob(k) in P
and accept ob(k) in P will create a session k between P and Q, whereas k![booking];P in
parallel with k?(x) in Q will use a previously established session k to communicate the data
contained in booking from P to Q. The specification of the example is coded below, using
‖ to denote parallel composition of processes, (νx) P as the creation of a new resource x
local to P , and 0 the termination of a process:

Customer = request ob(k1, k2) in (k1![booking]; k2?(y) in (k1![accept]; 0))

AC = accept ob(k1, k2) in (k1?(x) in (ν offer)k2![offer]; k1?(z) in 0)

System = Customer ‖ AC

Here, the communication will be structured if we can provide guarantees about the
use of sessions along the life of the protocol. For instance, considering the choreographic
specification of the example given above, we can guarantee that the usage of sessions will
require first an interaction using k1, followed by k2 and finalized by k1. It is obvious that
such guarantees become harder to express in architectures with thousands of services, which
is the case of service oriented architectures.

The second dichotomy here considered refers to the approach used to construct the
models. Descriptions can have imperative or declarative flavors: In an imperative approach,
one explicitly define the control flow of commands. Typical representatives of this approach
are based on process calculi, and come with behavioral equivalences and type disciplines as
their main analytic tools [18, 10, 2, 9, 21]. On the contrary, in a declarative approach the



4 H. A. LÓPEZ

focus drifts to the specification of the set of constraints (causality relations, time constraints,
quality of service) processes should fulfill in order to be considered correct [17, 20, 12,
15]. Even if these two trends address similar concerns, we find that they have evolved
rather independently from each other. Returning to our example, we might consider the
specifications above presented imperative specifications, whereas a declarative specification
will let parts of the process unspecified. For instance, we could relax the specification given
above by accepting any implementation of AC that complies with an ordering of actions
where it first receives the booking data, and eventually (that is, immediately or in an
unspecified sequence of interactions) returns a booking offer. Such a policy can be observed
better on a logical formalization, as for instance a formula in Linear Temporal Logic [13].

2. A unifying framework for structured communications

This research has as a main objective to leverage the trustworthiness level of a system
by providing a clear methodology of specification and verification of structured commu-
nications. Our goal is to give characterizations of services, both at the operational and
logical level. This is done by relating the way services are specified, both from their global
and local viewpoints. Figure 1 illustrates the approach for the specification and verifica-
tion of structured communications. A specification of a choreography C can be projected
to the parallel composition of end points Pi with an index i corresponding to each of the
participants involved in choreography. Similarly, every choreographic specification in C cor-
responds to a formula in a modal logic representing the interactions between agents; such
a correspondence is described in the figure as the bijection GL between C and φC . GL not
only provides a logical characterization of a process; it also allows for partial specification:
Given a logical formula, one can see if there is a process in C that can satisfy φC .

A similar reasoning is provided for orchestrations: Starting with i-indexed parallel com-
position implementing each participant Pi (denoted

∏
i[[Pi]]), one is interested in describing

the behaviour of its composition. Such description is embedded in the bijection LL between
the orchestration in

∏
i[[Pi]] and its logical counterpart in

⋂
i[[χi]]. Moreover, a formula repre-

senting the global behaviour of a choreography can be projected to a corresponding formula
describing the behaviour of a set of orchestrations. Such a mapping can be observed in the
diagram as the function LP from φC to

⋂
i[[χi]].

C oo GL //

EPP

��

φC

LP

��

[[C]]utccs

yy

e

99sssssssssss

ee
f

%%KKKKKKKKKXX

LTL

55

∏
i[[Pi]] oo

LL
//
⋂

i[[χi]]

Figure 1: Methodology for the verification of structured communcations

Finally, one can observe an interesting relation when comparing languages of structured
communications and other models of concurrency. CC refers to the Concurrent Constraint



MODELS FOR TRUSTWORTHY SERVICE AND PROCESS ORIENTED SYSTEMS 5

family of languages [19] and its timed extensions, such as timed CC (tcc) [6] and universal
tcc (utcc) [16]. We can see CC languages as part of the declarative approaches for the
analysis of choreographies: First, differently from the classical approach where a value is
assigned to each system variable (store-as-valuation), in CC languages the store represents
a constraint on the possible values of variables at one point in the life of the system.
Second, it allows one to consider both the declarative flavour of logics and the execution
of processes both in a single framework: the satisfaction of a formula allows the system
to proceed, and the execution/inhibition of a process in the interaction is only defined by
the amount of information available in the store. Timed extensions of the CC family refine
the notion of store-as-constraint, describing the system as sequences of input-output stimuli
between a set of processes and a store. These extensions give us enough modelling power
to express declarative and imperative information in the same framework. The encodings
between a choreography model and a timed CC specification are depicted by the function
e, the corresponding mapping between a timed CC model and an orchestration model are
depicted by the bijective function f ; finally, the correspondence between an CC model and
its logical counterpart is given by means of Linear Temporal Logic (LTL) [13].

3. Overview of Completed and Current Work

The evolution of this research project can be divided in three mayor research areas:
First, we started by equipping CC languages with primitives for the analysis of structured
communications, namely the treatment of mobile data and access control of information
flow. A recent addition to the familiy of CC languages, known as Universal Timed CCP
(utcc) introduces the possibility of universally quantify over predicates in the constraint
store. utcc is presented as a candidate for representing mobility and security, both im-
portant concepts when talking about structured communications. However, the universal
quantification in utcc is completely unrestricted. This means that in the proposed represen-
tations of link mobility and security protocols in utcc, every agent may guess channel names
and encrypted values by universal quantification. It is thus necessary to enforce a restriction
on the allowed processes to make sure that this is not possible. We proposed utccs , an
extension of universal tcc with a type system for constraints used as patterns in process
abstractions, which essentially allows us to distinguish between universally abstractable in-
formation and secure (non-leakable information) in predicates. We also proposed a novel
notion of abstraction under local knowledge, which gives a general way to model that a
process (principal) knows a key and can use it to decrypt a message encrypted with this
key without revealing the key [8].

Second, we related CC and orchestration languages. We exploited utcc to give a
declarative interpretation to the language of orchestrations at [9]. This way, services can be
analyzed in a declarative framework where time is defined explicitly, and their behaviour
compared to formulae in LTL. We do so by giving an operationally correspondent encoding
of the language in [9] into utcc. Moreover, the selected language is prone to timed exten-
sions: as we show in [11] an orchestration language can be benefitted from the inclussion
of timed information on the duration of sessions, declarative preconditions within session
establishment constructs, and session abortion primitives.

Finally, we filled the gap between choreographic models and logical specifications. Start-
ing with an extension of Hennesy-Milner logic [7], we introduced GL, a global logic for the



6 H. A. LÓPEZ

study of choreographies. GL describes properties over the transitions of a given chore-
ography. As for structured communications, GL places special on the main elements of
interactions in the choreography, namely the participants involved in a communication, the
sessions used in an interaction and the effects on the variables by a given communication.
The logic is equipped with a proof system that allows for verification of properties among
participants in a choreography. With GL, one can see the state of a choreography as a
formula in the logic, and one can check for satisfaction of desirable properties by relating a
logical formula wrt a choreographic specification [3].

4. Open Issues

The research being done to the moment constitutes just seminal steps on the path
towards a verification framework of structured commmunications. Our main concerns re-
late to establishing a relation between the model of end-points and logical frameworks for
the specification of sessions. In [1], Berger et al. presented proof systems characterizing
May/Must testing preorders and bisimilarities over typed π -calculus processes. The con-
nection between types and logics in such system comes in handy to restrict the shape of
the processes one might be interested. In particular, being the synchronization methods in
orchestration languages of similar nature as the ones present in the π calculus, one might
consider such work as a suitable proof system for the calculus of end points. Our next
step will focus on relating GL to orchestrations, both by providing a corresponding logic for
the analysis of orchestration and by making the logical projection between global and local
formulae. If successful, this research will contribute by providing a basis for logical speci-
fications and model checking of structured communications. Finally, we want to continue
the research on representing both global and local process views in concurrent constraint
calculi, aiming at a unified representation of both views within the same formal model.

Acknowledgments

This research owes much to Thomas Hildebrandt for his indispensable guidance, and
to Marco Carbone for the many insightful discussions profiling this topic of research. The
research has been partially supported by the Computer Supported Mobile Adaptive Business
Processes (www.CosmoBiz.org) project and the Trustworthy Pervasive Healthcare Services
(www.Trustcare.dk) project, supported by the Danish Research Agency (grant no.: 274-06-
0415 and grant no.: 2106-07-0019).

References

[1] M. Berger, K. Honda, and N. Yoshida. Completeness and logical full abstraction in modal logics for
typed mobile processes. In L. Aceto, editor, ICALP’08, number 5126 in LNCS, pages 99–111. Springer-
Verlag, Berlin Germany, 2008.

[2] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari, A. Ravara,
and D. Sangiorgi. SCC: a service centered calculus. Proceedings of WS-FM, 4184:38–57, 2006.

[3] M. Carbone, T. Hildebrandt, and H. A. López. Towards a modal logic for the global calculus.
In K. Honda and A. Mycroft, editors, Programming Language Approaches to Concurrency and
Communication-cEntric Software (PLACES), 2010.

[4] M. Carbone, K. Honda, and N. Yoshida. A calculus of global interaction based on session types. In 2nd
Workshop on Developments in Computational Models (DCM), ENTCS, 2006.



MODELS FOR TRUSTWORTHY SERVICE AND PROCESS ORIENTED SYSTEMS 7

[5] M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming for web
services. In 16th European Symposium on Programming (ESOP), volume 4421 of LNCS, pages 2–17,
Braga, Portugal, March 2007. Springer, Berlin Heidelberg.

[6] F. de Boer, M. Gabbrielli, and M. Meo. A Timed Concurrent Constraint Language. Information and
Computation, 161(1):45–83, 2000.

[7] M. Hennessy and R. Milner. On Observing Nondeterminism and Concurrency. In Proceedings of the 7th
Colloquium on Automata, Languages and Programming, pages 299–309. Springer-Verlag London, UK,
1980.

[8] T. Hildebrandt and H. A. López. Types for Secure Pattern Matching with Local Knowledge in Universal
Concurrent Constraint Programming . In International Conference on Logic Programming (ICLP),
volume 5649 of Lecture Notes in Computer Science, pages 417–431. Springer, Berlin Heidelberg, 2009.

[9] K. Honda, V. Vasconcelos, and M. Kubo. Language Primitives and Type Discipline for Structured
Communication-Based Programming. In 7th European Symposium on Programming (ESOP): Program-
ming Languages and Systems, pages 122–138. Springer-Verlag London, UK, 1998.

[10] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. In Proc. of 16th
European Symposium on Programming (ESOP’07), volume 4421 of Lecture Notes in Computer Science,
pages 33–47. Springer, 2007.

[11] H. A. López, C. Olarte, and J. A. Pérez. Towards a Unified Framework for Declarative Structured
Communications. In Programming Language Approaches to Concurrency and Communication-cEntric
Software (PLACES’2009), volume 17 of EPTCS, pages 1–15, 2010.

[12] K. M. Lyng, T. Hildebrandt, and R. R. Mukkamala. The Resultmaker Online Consultant: From Declar-
ative Workflow Management in Practice to LTL. In Proc. of 1st Intl. Workshop on Dynamic and Declar-
ative Business Processes (DDBP), Munich, Germany, 2008.

[13] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems: Specification. Springer,
1992.

[14] J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area computing. Journal of
Software and Systems Modeling, May 2006.

[15] A. K. Nørgaard, L. Pedersen, and P. Strøiman. Method for generating a workflow on a computer, and
a computer system adapted for performing the method. Patent, 05 2005. US 6895573.

[16] C. A. Olarte and F. D. Valencia. Universal concurrent constraint programming: Symbolic semantics
and applications to security. In 23rd Annual ACM Symposium on Applied Computing (SAC), 2008.

[17] M. Pesic and W. van der Aalst. A Declarative Approach for Flexible Business Processes Management.
Lecture Notes in Computer Science, 4103:169, 2006.

[18] F. Puhlmann and M. Weske. Using the Pi-Calculus for Formalizing Workflow Patterns. BPM, 3649:153–
168, 2005.

[19] V. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
[20] W. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative Service Flow Language.

Lecture Notes in Computer Science, 4184:1, 2006.
[21] H. Vieira, L. Caires, and J. Seco. The Conversation Calculus: A Model of Service-Oriented Computation.

In Programming languages and systems: 17th European Symposium on Programming (ESOP), page 269,
Budapest, Hungary, 2008. Springer-Verlag New York.

If accepted for publication by ICLP, this work will be licensed under the Creative Commons Non-Commercial No
Derivatives License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.


