
Formal Models for Trustworthy Process and Service Oriented
Systems

HUGO ANDRÉS LÓPEZ ACOSTA

lopez@itu.dk

Project report to qualify for the degree of

Master of Science in Information Technologies

Advisor

THOMAS T. HILDEBRANDT

IT University of Copenhagen

Programming Logic and Semantics

Master Programme on Software Development and Technology

Copenhagen

2009

mailto:lopez@itu.dk

Abstract

This report studies process calculi and its connections with service oriented systems. De-
spite of being such a young trend, service oriented systems have become an important
area of research in the last decade, and several trends have been derived. In particular, we
center our studies in the relationships between two dichotomies: the global/local views of
services, and the imperative/declarative way used for the specification of services. On the
one hand, the level of abstraction used for modelling processes plays an important role:
either we describe an interaction scenario from a global viewpoint (choreography) or we
describe the system as the composition of the local behaviours of each participant (or-
chestration). On the other hand, descriptions can have imperative or declarative flavors:
In an imperative approach, we explicitly define the control flow of commands, whereas
in a declarative approach the focus is drifted to the specification of the set of conditions
processes should fulfill in order to be considered correct. Even if these two trends address
similar concerns, we find that they have evolved rather independently from each other.

The ultimate goals of this thesis are: (i) to provide formal models for process and service
oriented systems, possibly combining the different views described above, and (ii) to pro-
vide support for the reasoning about correctness and security of a service oriented system,
thereby raising its level of trustworthiness. Specifically, this project centers its research
within the area of process calculi, and its connections with type systems and specification
logics as ways to provide such correctness guarantees. The report can be divided into two
main contributions:

- First, we start by using a model of coordination defined in terms of agents that interact
over a global store consulting and imposing constraints. The model, known as Concurrent
Constraint Programming (CCP), allows for asynchronous communication, abstraction of
data, deadlocks and a limited model of mobile behaviour. A recent extension to CCP,
known as Universal Timed CCP (utcc) introduces the possibility of universally quantify
over predicates in the constraint store. We propose a simple type system for constraints
used as patterns in process abstractions, which essentially allows us to distinguish between
universally abstractable information and secure (non-leakable information) in predicates.
We also propose a novel notion of abstraction under local knowledge, which gives a general
way to model that a process (principal) knows a key and can use it to decrypt a message
encrypted with this key without revealing the key.

- Second, we relate the work on Concurrent Constraint Programming to other models of
coordination. We describe initial results on the definition of a formal framework for the
declarative analysis of services. We shall exploit utcc, to give a declarative interpretation
to the language defined by Honda, Vasconcelos, and Kubo (henceforth referred to as

iii

HVK). This way, services can be analyzed in a declarative framework where time is
defined explicitly. We begin by proposing an encoding of the HVK language into utcc

and studying its correctness. We then move to the timed setting, and propose HVKT, a
timed extension of HVK. The extended language explicitly includes information on session
duration, allows for declarative preconditions within session establishment constructs, and
features a construct for session abortion. We then discuss how the encoding of HVK into
utcc straightforwardly extends to HVKT.

Additionally, we present initial efforts in relating logics and coordination models. We
aim at leveraging the trustworthiness of a process model by providing a methodology for
the specification and verification of structured communications. As recently presented,
choreographies and orchestrations are operationally correspondent, and one can either
use an choreography to generate its end-point projections, or to take a set of end-point
specifications and describe their respective choreography. We present a way to describe
properties over global specifications. Starting with an extension of Hennesy-Milner logic,
we introduce a proof system that allows for verification of properties among participants
in a choreography. With such a logic, one can see the state of a choreography as a formula,
and one can check for satisfaction of desirable properties. Some examples of important
properties on service specifications are drawn, and we provide hints on how this work can
be extended towards a full verification framework for services, closing the gap between
logics for choreography and their correspondent parts over an end-point projection.

iv

Contents

List of Tables vii

List of Figures 1

1 Introduction 2

1.1 Motivation . 2

1.2 Contributions . 5

1.3 Document Structure . 5

2 Preliminaries 7

2.1 A Process Calculus for Mobile Systems . 8

2.1.1 Meaning of Processes . 9

2.2 Concurrent Constraint Programming . 10

3 Types for Secure Pattern Matching with Local Knowledge in Universal CCP 14

3.1 Introduction . 14

3.2 utcc and Secure Pattern Matching . 15

3.2.1 Motivating a refined universal abstraction in utcc 15

3.2.2 Types for secure abstraction patterns in utcc 16

3.3 Applications . 20

3.3.1 Protocols . 22

3.4 Conclusions and Future Work . 23

4 Towards a Unified Framework for Declarative Structured Communications 25

4.1 Introduction . 25

4.2 Preliminaries . 28

4.2.1 A Language for Structured Communication 28

4.2.2 utcc’s Derived Constructs. 30

v

4.3 A Declarative Interpretation for Structured Communications 31

4.4 A Timed Extension of HVK . 35

4.4.1 Case Study: Electronic booking . 37

4.4.2 Exploiting the Logic Correspondence . 38

4.5 Concluding Remarks . 39

5 A Logic for Choreography 41

5.1 Introduction . 41

5.2 The Global Calculus . 42

5.2.1 Syntax. 43

5.2.2 Semantics. 43

5.2.3 Type discipline for the Global Calculus . 45

5.3 A Logic for the Global Calculus . 46

5.3.1 Syntax of the Logic. 46

5.3.2 Semantics of the Logic. 49

5.4 Proof System . 50

5.5 Future work . 52

6 Concluding Remarks 54

6.1 Future Directions . 54

Bibliography 56

vi

List of Tables

2.1 Operational semantics of the π-calculus (excerpt) 10

4.1 ATM process specification . 26

4.4 Encoding HVK → utcc . 32

4.5 Encoding of HVKT . 36

4.6 Online booking example with two agents. 37

4.7 Online booking example with online broker. 38

5.1 Operational Semantics for the Global Calculus . 44

5.2 Assertions of Choreography logic . 46

5.3 Assertions of the Choreography Logic . 49

5.4 Proof system for the Global Calculus . 50

vii

List of Figures

1.1 Views and approaches in service modelling . 3

2.1 Transition System for utcc: Internal and Observable transitions 12

3.1 Typing rules for secure patterns and processes . 18

3.2 Entailment relation for a security constraint system. 21

3.3 Needham-Schröeder-Lowe protocol with public-key encryption 22

3.4 NSL protocol in SPCCP . 23

4.1 Reduction Semantics of HVK . 29

5.1 Methodology for Service - Oriented Verification . 42

5.2 Alternatives for service synchronization . 48

1

1 Introduction

This report studies process calculi and its connections with service oriented systems. In
particular, we explore the use of type systems and specification logics as ways to provide
guarantees about the trustworthiness of a system. Formally, the report counts as my
Master’s thesis and it describes core points of my research during the first two years of my
Ph.D.

1.1 Motivation

As recently pointed out by the ICT theme of EU Seventh Framework Programme (FP7),
the need of trustworthy and pervasive services infrastructure is considered one of the
three mayor challenges in ICT for the next ten years. The “future internet” proposes
questions in terms of scalability, mobility, flexibility, security, trust and robustness to the
〉30 years old current Internet architecture. A vast landscape of application and ever-
changing requirements and environments must be supported, and new ways of interaction
must be devised, coping with safety and reliability in their coordination methods.

The line of research investigating such questions has been constantly expanding since the
early nineties, both combining approaches from the academia and the industry. As result
of such efforts, its been normally hard to differentiate between similar derived fields, like
Business Processes, Workflow technologies and Service Oriented Computing. A Business
Process is the set of steps executed in order to fulfill a (business) goal. Business processes
have always been at the hearth of companies interests, and the obvious goal has been
to develop better, cheaper, and faster processes, incrementing the profit of the company.
Workflows came as an initial response for the need of proper descriptions of business
processes, providing a framework for the specification and automation of processes by
means of activities respecting a business logic. They aim at integrating coarse-grained
components and have a single place where the business logic is specified. Furthermore,
Service Oriented Computing (SOC) opens a new different horizon by distributing the
places where the business logic is defined: now, small process units (services) can be
shared between different organizations, so each of them can fulfill their business goals by
reusing and outsourcing services.

One of the most important aspects when modelling services relate to the notion of trust-
worthiness. Here we consider trustworthiness as the set of guarantees that one can evidence
from a system, both globally for all participants involved in a service composition, or lo-
cally as the guarantee that a single service must comply. A safe system is one in which a

2

property consider harmful for the life of the system would never happen, like for instance
the disclosure of the private credentials of the manager to a thief. Local guarantees relate
to the causal ordering in which events occurred in a system, like for instance the relation
between the payment of a good and its posterior delivery.

Despite of being such a young trend, different but interrelated views for the analysis of
service oriented systems have been proposed. We can enclose such approaches in two
dichotomies: global/local views of services, and imperative/declarative specifications. In
the first dichotomy, either we describe the system as the exchange of messages between
different participants, or we consider the system as the composition of the local behaviours
of each participant. In this first view, known as choreography, we consider the system
as a whole, taking care only of the interfaces that participants use when interacting to
the outside world. In the second view, known as orchestration, we model the system as
perceived by the eyes of each participant, sending and receiving messages but not knowing
which other actors are present in a communication.

The second dichotomy here considered refers to the approach used to construct the models.
Descriptions can have imperative or declarative flavors: In an imperative approach, we
explicitly define the control flow of commands. Typical representatives of this approach
are based on process calculi, and come with behavioral equivalences and type disciplines
as their main analytic tools. On the contrary, in a declarative approach the focus drifts to
the specification of the set of conditions processes should fulfill in order to be considered
correct. Even if these two trends address similar concerns, we find that they have evolved
rather independently from each other.

Imperative Declarative/Logic-Based

Global

Local

Global Calculus

WS-CDL

Timed CC

ConDec/Decserflow

LTL

π - calculus

End-Point Calculus

BPEL4WS

CC

Figure 1.1: Views and approaches in service modelling

Figure 1.1 presents representative languages and their relation to the above mentioned
characteristics. Starting with the π-calculus as foundational language, it supplied design-
ers of service oriented systems with rich theories (type systems, behavioural equivalences,
static analysis, specification logics) to study the behaviour of workflows [PW05]. This
approach, purely imperative in the way workflows were represented, evolved later in more
mature extensions of calculi specially defined for choreography and orchestration. The
Global calculus [CHY07] originates from Choreography Description Language (CDL), a
web service description language developed by W3C WS-CDL working group. The end-

3

point calculus is a typed π-calculus describing orchestrations and the causal relations
between messages. Other approaches have followed a similar evolution, such as for ex-
ample [LPT07, BBC+06, HVK98, VCS08]. An imperative approach has also been used
for industry languages and de-facto standards for the specification and execution of ser-
vices, such as IBM’s Web Service Flow Language [L+01], Microsoft’s XLANG [Tha01] and
BPEL4WS [ACD+03].

On the declarative side, languages such as ConDec [PvdA06] and DecSerFlow [vdAP06],
base their approaches on the specification of systems as the composition of pattern tem-
plates for Linear time Temporal Logic (LTL) formulas [MP92]. Similarly, industry-tailored
languages such as the Process Matrix [NPS05], have made use of the flexibility provided
by a logical formalization of workflows to derive flexible and adaptative service oriented
systems [LHM08].

The remaining items in Figure 1.1 refers to the Concurrent Constraint (CC) family of
languages [Sar93] and its timed extensions. We can see CC languages part of the declara-
tive approaches for the analysis of choreographies: Differently from the classical approach
where a value is assigned to each system variable (store-as-valuation), in CC languages
the store represents a constraint on the possible values of variables at one point in the
life of the system. This allows us to consider both the declarative flavour of logics and
the execution of processes both in a single framework: The satisfaction of a formula al-
lows the system to proceed, and the execution/inhibition of a process in the interaction
is only defined by the amount of information available in the store. Timed extensions of
the CC family refine the notion of store-as-constraint, describing the system as sequences
of input-output stimuli between a set of processes and a store. These extensions give us
enough modelling power to express declarative and imperative information in the same
framework, as we will see further in this document.

This thesis has as main objectives to explore the differences between current approaches
in service-oriented systems, start bridging the gap between different views in the speci-
fication of services, and to provide current specification languages with new techniques
for increase the trustworthiness of a system. The approach here taken involves several
independent but interrelated efforts at advancing current process calculi languages with
verification techniques where properties about a process can be verified. Particularly, the
two verification techniques here studied are:

• Type systems: These are tractable syntactic methods for proving the existence/absence
of certain process behaviour. Types enrich process specifications by giving the guar-
antee that, if respected the type discipline, then some good property will always be
respected, as for instance that the private key of a participant will never be disclosed
under a communication protocol.

• Specification Logics: Is the connection that a given process specification can have
with a given logical counterpart. Depending on the logic used, we can analyse
properties of the system such as that a given action would happen in the next
evolution of the system, or that a given property will eventually hold. Two main
exponents of this approach are the Hennesy-Milner logic [HM80] and temporal logics
(branching [Eme91] or linear time [MP92]).

4

1.2 Contributions

This qualification report presents the results a compilation of the following two research
papers:

1. Types for Secure Pattern Matching with Local Knowledge in Universal Concurrent
Constraint Programming. Joint work with T. Hildebrandt. In Proceedings of the
International Conference on Logic Programming (ICLP), volume 5649 of Lecture
Notes in Computer Science, pages 417–431 [HL09].

2. Towards a Unified Framework for Declarative Structured Communications. Joint
work with C. Olarte, and J. A. Pérez. In ETAPS satellite workshop on Program-
ming Language Approaches to Concurrency and Communication-cEntric Software:
(PLACES’09), Electronic Notes of Theoretical Computer Science [LOP09].

Additionally, the current report draws initial ideas on further topics of research during the
second part of my PhD. The first steps towards an specification logic for choreographies
is presented in chapter 5.

1.3 Document Structure

The document is structured as follows: In the next chapter we present a brief description
about calculi for concurrent communication systems. Such work puts together the prelim-
inaries sections of [HL09] and [LOP09]. We make particular emphasis on the foundations
of calculi for the specification of service-oriented systems, such as the π-calculus, and
CCP.

In chapter 3 starts our quest for trustworthy methods by introducing an initial type system
for the family of CC-languages, in particular, a recent extension of timed CC with a
universal abstraction operator [OV08a]. We propose a type system for constraints used as
patterns in process abstractions, which essentially allows us to distinguish between public
information and secure (non-leakable information) inside predicates. We also propose a
novel notion of abstraction under local knowledge, which gives a general way to model
that a process (principal) knows a key and can use it to decrypt a message encrypted with
this key without revealing the key. The published version of such work can be found at
[HL09].

Chapter 4 provides a mapping between different calculi for the specification of services:
We shall exploit universal CCP, to give a declarative interpretation to the of structured
communications defined by Honda, Vasconcelos, and Kubo. This way, structured com-
munications can be analyzed in a declarative framework where time is defined explicitly.
We begin by proposing an encoding of such language into universal CCP and studying
its correctness. We then move to the timed setting, and propose a timed extension of
the language of structured communications. The language explicitly includes informa-
tion on session duration, allows for declarative preconditions within session establishment
constructs, and features a construct for session abortion. Finally, we make use of the

5

connections of Universal CCP with Linear Temporal Logic to provide interesting analysis
in terms of constraint templates used in declarative analyses of services. The published
version of the work can be found at [LOP09].

In Chapter 5 we report initial steps towards a methodology for the specification and
verification of structured communications. As recently presented, choreographies and or-
chestrations are operationally correspondent, and one can either use an choreography to
generate its end-point projections, or to take a set of end-point specifications and describe
their respective choreography. We present a way to describe properties over global specifi-
cations. Starting with an extension of Hennesy-Milner logic, we introduce a proof system
that allows for verification of properties among participants in a choreography. With such
a logic, one can see the state of a choreography as a formula, and one can check for sat-
isfaction of desirable properties. Some examples of important properties on structured
communications are drawn, and we provide hints on how this work can be extended to-
wards a full verification framework for structured communications, closing the gap between
logics for choreography and their correspondent parts over an end-point projection.

Finally, in Chapter 6 we present overall concluding remarks, as well as pointing out to
principal directions derived from this work in the second part of my PhD.

6

2 Preliminaries

Process calculi (also known as process algebras) are formalisms devised for the description
and analysis of the behavior of concurrent systems; i.e., systems consisting of multiple
computing agents (processes) that interact with each other. As such, the goal of a process
calculus is to provide a rigorous framework where complex systems can be accurately
analyzed, including reasoning techniques to verify their essential properties. In this section
we discuss some basic principles on process calculi, including several issues that distinguish
them from other formal models for concurrency and the main approaches to give meaning
to processes.

The nature and features of concurrent systems occurring in the real world makes it difficult
the task of finding a canonical model in which every system can be accurately represented.
In fact, even in the context of a restricted field (say, distributed systems) a wide variety
of different phenomena, occurring at different levels, can be recognized. The goal is then
to identify a set of common set of underlying principles in the systems of interest, and to
define suitable operators that capture them in a precise way. In other words, a process of
abstraction is required to define meaningful calculi in the simplest possible way.

Process calculi are then abstract specification languages for concurrent systems. This
implies that models of systems abstract from real but unimportant details that do not
contribute in essential system interactions. Abstraction not only allow designers to better
understand the core of a system, but it also turns out to be necessary for an effective use
of reasoning techniques associated to the calculus.

In addition, process calculi follow a compositional approach for systems description. This
implies that a process calculus model of a system is given in terms of models representing
its subsystems. This favors an appropriate abstraction of the main components of the sys-
tems and, more importantly, allows to explicitly reason about the interactions among the
identified subsystems. As we will see later, each calculus assumes a particular abstraction
criteria over systems, which will have influence on the level of compositionality models will
exhibit.

Process calculi also pay special attention to economy. There are few process constructors,
each one with a distinct and fundamental role in capturing the behavior of systems. A
reduced number of constructors in the language helps to maintain the theory underlying
the calculus tractable as well as stimulates a precise definition of the abstraction criteria
that the calculus intends to express.

Let us illustrate the interplay of the above issues by introducing one of the most represen-
tative process calculus for mobility.

7

2.1 A Process Calculus for Mobile Systems

The π-calculus [Mil99, SW01], was proposed by Milner, Parrow and Walker in the early
90’s for the analysis of mobile, distributed systems. The ability of representing link mobility
is one of the main advances of the π-calculus with respect CCS (Calculus for Communi-
cating Systems) [Mil95], its immediate predecessor. In the π-calculus, the description of
mobile systems and their interactions is based on the notion of name. In principle, a
process (an abstraction of a mobile agent) should be capable of evolving in many different
ways, but always maintaining its identity during the whole computation. In addition, a
process should be capable of identifying other related processes. In the π-calculus a name
also denotes a communication channel, in such a way that communication among two
processes is possible provided that they share the same channel. As a consequence, in the
π-calculus a name abstracts the identity of processes in an interaction by considering the
communication channel each process is related to.

In the π-calculus, process capabilities are abstracted as atomic actions. They come in two
main flavors:

• x(z), representing the reception (or reading) of the datum z on the channel x. z is
then ready for any subsequent computations.

• x〈d〉, denoting the transmission of a datum d over the channel x.

Actions (denoted by α) are used in the context of processes that are constructed by the
following syntax:

P,Q, . . . ::= 0 |
∑
i∈I

αi.Pi | P ‖ Q | !P | (νx) .P .

Some intuitions underlying the behavior of these processes follow.

• Process 0 represents the process that does nothing. It is meant to be the basis of
more complex processes.

• The interaction of processes P and Q is represented by their parallel composition
P ‖ Q. In addition to the individual actions of each process, their communication is
possible, provided that they synchronize on a channel, as illustrated in the following
example.

R = x(y).y〈z〉.0 ‖ x〈w〉.0

Here, R represents the interaction of two processes sharing a channel x. The trans-
mission of w through x is complemented by its reception, which involves recognizing
w as y. This is regarded as an atomic computational step. Afterwards, a datum z

is sent, using the received name w as communication channel. Notice that in the
context of R, there is no partner for w in its attempt of transmitting z.

•
∑

i∈I αi.Pi, usually known as a summation process, represents a choice on the in-
volved Pi’s, depending on the capabilities represented by each αi. Only when any

8

such processes is ready to interact with another one, a choice among all the possible
interaction options takes place. For instance, in the process

(x(y).z〈y〉.0 + z(y).0 + x(w).w(z).0) ‖ x〈r〉.0

the first and third components of the sum are ready to interact with x〈r〉.0. Depend-
ing on the choice, different resulting processes are possible. For instance, if the third
component is selected, the resulting interaction would lead to the process r(z).0.

• Process !P represents the infinite execution (or replication) of process P . There will
be an infinite number of copies of P executing: !P = P ‖ P ‖ P ‖

• Process (νx) .P is meant to describe restricted names. Name x is said to be local
to P and is only visible to it. A disciplined use of restricted names is crucial in
delimiting communication.

The π-calculus is thus a language based in a few simple, yet powerful, abstractions. In
addition to the above-mentioned abstraction of name as communication channels that
can be transmitted, in the π-calculus the behavior of mobile systems is reduced to a
few representative phenomena: synchronization on shared channels, infinite behavior and
restricted communication. The compositional nature of the calculus is elegantly defined by
the parallel composition operator, which is the basis for representing interactions among
processes and the construction of models.

2.1.1 Meaning of Processes

Endowing process terms with a formal meaning is crucial in order to analyze process
behavior. A process language can have several semantic interpretations. In fact, the com-
bination of two or more approaches is a common practice, since for instance, an approach
can be more appropriate for intuitive understanding of processes whereas other can be
more suitable for mathematical proofs. This is usually the case of Operational Semantics
and Denotational/Algebraic ones. The use of several semantics motivates a legitimate
question, that of determining whether different semantics are equivalent to each other.
Lets illustrate the use of a semantics with the introduction of an operational semantics for
the π-calculus.

Operational Semantics An operational semantics interprets a process term by using tran-
sitions that define computational steps. A common practice is to capture the state of the
system by means of configurations, succinct structures that, in addition to a process term,
may include other relevant information. Transitions are usually labelled by the actions
that originate evolution between configurations. This is commonly denoted as P a−→ Q,
meaning that process P performs action a and then behaves as process Q. Operational
semantics are then defined by a set of (reduction) rules that formally define the features
of the relation a−→. The set of reduction rules that constitute the operational behavior of
a calculus is also known as its labelled transition system (or LTS).

As an example, consider the rule that formalizes the communication of interacting pro-
cesses in the π-calculus, informally discussed in the previous section:

x(y).P ‖ x〈z〉.Q τ−→ P{z/y} ‖ Q.

9

In this (labelled) rule, P{z/y} denotes the syntactic replacement of all occurrences of the
name y with the name z in the context of process P . An excerpt of the transition rules
for the late π-calculus is presented in Figure 2.1.

Poutput

x(y).P
x(y)−→ P

Pinput

x〈z〉.P x〈z〉−→ P

Psynch
P

x(y)−→ P ′ Q
x〈z〉−→ Q′

P ‖ Q τ−→ P ′ ‖ Q′{z/y}
Pstruct

P ≡ P ′ P ′
α−→ Q′ Q′ ≡ Q

P
α−→ Q

Table 2.1: Operational semantics of the π-calculus (excerpt)

2.2 Concurrent Constraint Programming

This section provides the interested reader the main concepts of Concurrent Constraint
Programming (CCP), Temporal Concurrent Constraint Programming (tcc) and its uni-
versal extension (utcc), following the presentation of [OV08a].

Concurrent Constraint Programming (CCP) was first introduced by Vijay Saraswat in
[Sar93] as a rich family of programming languages where (partial) information plays a
fundamental in the computation and control of concurrent programs. In CCP-based calculi
all the (partial) information is monotonically accumulated in a so-called store. The store
keeps the knowledge about the system in terms of constraints, or statements defining the
possible values a variable can take (e.g., x+y ≥ 42). It also defines an entailment relation
“” specifying interdependencies among constraints. Intuitively, c d means that the
information in d can be deduced from that in c (as in, e.g., x ≥ 42 x ≥ 0). Concurrent
agents (i.e., processes) that are part of the system interact with each other using the store
as a shared communication medium. They have two basic capabilities over the store,
represented by tell and ask operations. While the former adds a piece of information
about the system, the latter queries the store to determine if some piece of information
can be inferred from its current content. Tell operations can act concurrently refining the
information in the store while asks can serve as a general synchronization mechanism, that
will be blocked if there is not enough information into the store to answer its query.

A fundamental notion in CCP-based calculi is that of a constraint system. Basically, a
constraint system provides a signature from which syntactically denotable objects in the
language called constraints can be constructed, and an entailment relation () specifying
interdependencies among such constraints. More precisely,

Definition 1 (Constraint System). A constraint system is a pair CS = (Σ,∆) where Σ is
a signature of function (F) and predicate (P) symbols, and ∆ is a decidable theory over Σ
(i.e., a decidable set of sentences over Σ with at least one model). The underlying language
L of (Σ,∆) contains the symbols ¬,∧,⇒,∃ denoting logical negation, conjunction, impli-
cation, existential quantification. Constants, such as tt and ff denote the usual always
true and always false values, respectively. Constraints, denoted by c, d, . . . are first-order
formulae over L. We say that c entails d in ∆, written c ∆ d (or just c d when no
confusion arises), if c ⇒ d is true in all models of ∆. For operational reasons we shall

10

require to be decidable.

Timed concurrent constraint programming (tcc) [SJG94] extends CCP for modeling re-
active systems. In tcc, time is conceptually divided into time units (or discrete time
intervals). In a particular time unit, a tcc process P gets an input (i.e. a constraint) c

from the environment, it executes with this input as the initial store, and when it reaches
its resting point, it outputs the resulting store d to the environment. The resting point
determines also a residual process Q which is then executed in the next time unit. Here it
is where one of the most important differences between CCP and tcc resides, as whilst the
refinement of c during the execution of P at interval i is monotonic, d is not necessarily a
refinement of c (that is, constraints can be forgotten).

Definition 2 (tcc process syntax). Processes P,Q, . . . ∈ Proc are built from constraints
c ∈ C and variables x ∈ V in the underlying constraint system by the following syntax.

P,Q . . . ::= skip | tell (c) | when c doP | P ‖ Q | (local~x; c)P |
next (P) | unless c next (P) | !P

Intuitively, the process skip does nothing, tell (c) adds a new constraint c into the store,
while when c doP asks if c is present into the store in order to execute P . A process
(local ~x; c) P binds the variables ~x in P by declaring them private to P under a constraint
c. If c = tt, we write (local ~x) P instead of (local ~x; tt) P . The operators associated with
time allow the process to go one time unit in the future (next (P)) or to define time-outs:
if at the current time unit it is not possible to entail the constraint c then the process
unless c nextP will execute P at the next time unit. We will often use nextn (P) as a
shorter version of next (next (. . .next (P))) n-times. Finally, P ‖ Q denotes the usual
parallel execution and !P denotes timed replication; that is, !P = P ‖ next (!P) executes
P at the current time and replicates its behaviour over the next time period.

utcc [OV08a] is an extension of the tcc calculus with a general ask defining a model
of synchronization. While in tcc an ask when c doP is blocked if there is not enough
information to entail c from the store, utcc inspires its synchronization mechanism on the
notion of abstraction in functional programming languages. (λ ~x; c) P can be seen as the
dual version of (local ~x; c) P in which the variables are abstracted with respect to the
constraint c and the process P . A process Q = (λ ~x; c) P binds the variables ~x in P and c.
It executes P [~t/~x] for every term ~t s.t. the current store entails an admissible substitution
over c[̃t/x̃]. The substitution [~t/~x] is admissible if |~x| = |~t| and no xi in ~x occurs in ~t.
Furthermore, Q evolves into skip at the end of the time unit, i.e., abstractions are not
persistent when passing from one time unit to the next one.

The operational semantics provides the intuitions on how utcc processes interact. In
principle, a configuration is represented by the tuple 〈P, c〉 where P denotes a set of
processes and c a constraint store. P can evolve to a further process P ′ during an internal
transition (−→) where the constraint store c is monotonically refined, or can execute
an observable transition (=⇒), producing the result of the future function of P and the
constraint store d. The set of operational rules is presented in Figure 2.1, where 〈P, c〉
denotes a configuration, and F (Q) denotes the future function of process Q.

11

Definition 3 (Structural Congruence). Structural congruence (denoted by ≡) is defined
for utcc by the axioms: (i) P ≡ Q if they are α-equivalent. (ii) P ‖ skip ≡ P . (iii)
P ‖ Q ≡ Q ‖ P . (iv) P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R. (v) (local ~x; c) skip ≡ skip. (vi)
P ‖ (local ~x; c) Q ≡ (local ~x; c) (P ‖ Q) if ~x 6∈ fv(P). (vii) 〈P, c〉 ≡ 〈Q, c〉 iff P ≡ Q.

RT 〈tell (d), c〉 −→ 〈skip, c ∧ d〉 RS
γ′1 −→ γ′2
γ1 −→ γ2

ifγ1 ≡ γ′1 and γ2 ≡ γ′2

RP
〈P, c〉 −→ 〈P ′, c′〉

〈P ‖ Q, c〉 −→ 〈P ′ ‖ Q, c′〉 RU
d c

〈unless cnextP, d〉 −→ 〈skip, d〉

RR 〈!P, c〉 −→ 〈P ‖ next (!P), c〉 RL
〈P, (∃x̃d) ∧ c〉 −→ 〈P ′, (∃x̃d) ∧ c′〉

〈(local ~x; c) P, d〉 −→ 〈(local ~x; c′) P ′, (∃x̃c′) ∧ d〉

RA
d c[~t/~x] [~t/~x] is admissible

〈(λ ~x; c) P, d〉 −→ 〈P [~t/~x] ‖ (λ ~x; c ∧ (x̃ 6= t̃)) P, d〉

RO
〈P, c〉 −→∗ 〈Q, d〉 6−→

P
(c,d)
======⇒ F (Q)

Where F (Q) =

8>>>>>><>>>>>>:

skip if Q = skip
F (Q1) ‖ F (Q2) if Q = Q1 ‖ Q2

R if Q = next (R)
skip if Q = (λ ~x; c) R
(local ~x) F (R) if Q = (local ~x; c) R
R if Q = unless cnextR

Figure 2.1: Transition System for utcc: Internal and Observable transitions

Intuitively, the operational rules of utcc behaves almost in the same way as its counterpart
in tcc, excepting by the general treatment of asks in utcc. Here we will describe the
operational consequence of this change, we refer to [OV08a] for further details on the
operational semantics. Rule RA describes the behavior of the abstraction (λ ~x; c) P : a
configuration here considers two stores, being c and d local and global stores respectively.
If d entails c[̃t/x̃] then P [~t/~x] is executed. Moreover, the abstraction persists in time,
allowing any other process to match with ~x in P while no other replacements of ~x with ~t
will occur, as d is augmented with a constraint disallowing this.

The notion of local information can be evidenced in RL, considering a process P =
(local ~x; c) Q, we have to consider: (i) that the information about ~x locally for P subsumes
any other information present for the same set of variables in the global store; therefore,
~x is hidden by the use of an existential quantifier over x̃ in d. (ii) that the information
about ~x that P can produce after the reduction is still local, so we hide it by existentially
quantifying ~x in c′ before publishing it to the global store. After the reduction, c′ will be
the new local store of the evolution of internal processes.

Finally, observable behaviour is described by Ro: after having used the internal transitions
in a process P to evolve to a process Q with a quiescent-point (in which no more informa-
tion can be added/inferred), the reduction will continue by executing the future function
of Q with the resulting constraint store.

utcc provides a number of reasoning techniques: First, utcc processes can be represented
as partial closure operators (i.e. idempotent and extensive functions). Also, for a signifi-
cant fragment of the calculus, the input-output behavior of a process P can be retrieved

12

from the set of fixed points of its associated closure operator [OV08b]. Second, utcc pro-
cesses can be characterized as First-order Linear-time Temporal Logic (FLTL) formulas
[MP92]. This declarative view of the processes allows for the use of the well-established
verification techniques from FLTL to reason about utcc processes.

Definition 4 (Output Behavior). Let s = c1.c2....cn be a sequence of constraints. If

P = P1
(tt,c1)
===⇒ P2

(tt,c2)
===⇒ . . . Pn

(tt,cn)
===⇒ Pn+1 ≡u Q we shall write P

s===⇒
∗
Q. If

s = c1.c2.c3... is an infinite sequence, we omit Q in P
s===⇒

∗
Q. The output behavior

of P is defined as o(P) = {s | P s===⇒
∗
}. If o(P) = o(Q) we shall write P ∼o Q.

Furthermore, if P s===⇒ Q and s is unimportant we simply write P ===⇒∗ Q.

Logic Correspondence. Remarkably, in addition to this operational view, utcc processes
admit a declarative interpretation based on Pnueli’s first-order linear-time temporal logic
(FLTL) [MP92]. This is formalized by the encoding below, which maps utcc processes
into FLTL formulas.

Definition 5. Let TL[[·]] a map from utcc processes to FLTL formulas given by:

TL[[skip]] = tt TL[[tell(c)]] = c
TL[[P ‖ Q]] = TL[[P]] ∧ TL[[Q]] TL[[(λ ~y; c) P]] = ∀~y(c⇒ TL[[P]])
TL[[(local ~x; c)P]] = ∃~x(c ∧ TL[[P]]) TL[[nextP]] = ◦TL[[P]]
TL[[unless c nextP]] = c ∨ ◦TL[[P]] TL[[!P]] = 2TL[[P]]

Modalities ◦F and �F represent that F holds next and always, respectively. We use the
eventual modality 3F as an abbreviation of ¬�¬F .

The following theorem relates the operational view of processes with their logic interpre-
tation.

Theorem 1 (Logic correspondence [OV08a]). Let TL[[·]] be as in Definition 5, P a utcc

process and s = c1.c2.c3... an infinite sequence of constraints s.t. P
s===⇒

∗
. For every

constraint d, it holds that: TL[[P]] 3d iff there exists i ≥ 1 s.t. ci d .

Recall that an observable transition P
(c,c′)

===⇒ Q is obtained from a finite sequence of inter-
nal transitions (rule RO). We notice that there exist processes that may produce infinitely
many internal transitions and as such, they cannot exhibit an observable transition; an
example is (λ x; c(x)) tell(c(x + 1)). The utcc processes considered in this paper are
well-terminated, i.e., they never produce an infinite number of internal transitions during
a time unit. Notice also that in the Theorem 1 the process P is assumed to be able to
output a constraint ci for all time-unit i ≥ 1. Therefore, P must be a well-terminated
process.

13

3 Types for Secure Pattern Matching with Local
Knowledge in Universal CCP

3.1 Introduction

A number of variants of process calculi and logical approaches have been proposed for
the analysis of security protocols, including [AG99, CW01, CE02, FA01, Bla01, Mil03,
BRNN04, OV08a]. The approaches have generally two features in common: The first is the
use of some kind of logical inference/pattern matching/unification to represent the ability
of attackers and principals to infer what has been communicated, and from that knowledge
construct new messages. The second is a way of representing and communicating local
knowledge (such as keys or nonces in security protocols).

The combination of these two features calls for some means to control the ability to
infer knowledge which is supposed to be inaccessible, e.g. a message encrypted by a key
unknown to the attacker or the key itself. Typically, this takes the form of a restriction
on the rules for inference of knowledge/pattern matching, designed particularly for the
considered setting of security protocols. Sometimes the restriction is enforced by the
language, as e.g. in [BRNN04], however in many cases the restriction must be maintained
in the specification of the attacker and the protocol under analysis.

In the present paper we propose a more general solution to representing this kind of
restriction. Even though we believe that the solution is broadly applicable, in this paper
we focus on the setting of concurrent constraint programming (CCP). This is due to the
fact that our work was directly triggered by the interesting recent proposal of the calculus of
universal timed concurrent constraint programming (utcc)[OV08a], which extends timed
concurrent constraint programming [SJG94] to include a universally quantified abstraction
(ask) operation. Intuitively, the new operation added in utcc, written (λ ~x; c) P , spans
a copy of the residual process P [~t/~x] for all possible inferences of c[~t/~x]. This adds the
ability to extend the scope of local knowledge which is not possible in CCP [LPP+06]. In
particular it was illustrated in [OV08a] how to model a notion of link mobility as found
in the pi-calculus and to use the universal abstraction operator for communication of
messages in security protocols.

However, the universal quantification in utcc is completely unrestricted. This means that
in the proposed representations of link mobility and security protocols in utcc, every
agent may guess channel names and encrypted values by universal quantification. It is
thus necessary to enforce a restriction on the allowed processes to make sure that this is
not possible.

14

As a general solution for making exactly such restrictions, we propose a simple type system
for constraints used as patterns in abstractions, which essentially allow to distinguish
between universally abstractable and secure variables in predicates. We also propose a
novel notion of abstraction under local knowledge, which gives a general way to model that
a process (principal) knows a key and can use it to decrypt a message encrypted with this
key without revealing the key.

We exemplify the type system on π calculus-like mobility of local names and for giv-
ing semantics to a novel security protocol language called Security Protocol Concurrent
Constraint Programming language (SPCCP), combining the best features of the the Se-
curity CCP (SCCP) language proposed by Olarte and Valencia [OV08a] and the Security
Protocol Language (SPL) by Crazzolara and Winskel [CW01].

The foregoing document is divided as follows: Section 3.2 introduces the type system for
utcc the new abstraction rule over local knowledge, as well as termination and subject-
reduction results over the type system proposed. In Section 3.3 we give more details on
the use of the utcc with secure patterns. Finally, concluding remarks and future work are
described in Section 3.4. This chapter presupposes previous knowledge on CCP and utcc:
definitions can be found in Section 2.2.

3.2 utcc and Secure Pattern Matching

As described in Sec. 2.2, one of the main advantages of utcc with respect to tcc is that
the universal abstraction operator allows for substitution of constraints for variables in
processes. The extension has been proposed for the treatment of mobile links as present in
the π-calculus [MPW92] and pattern matching in modeling of security protocols. Below
we will give two motivating examples for why a more refined abstraction operator is needed
for modeling mobile local links and secret keys.

3.2.1 Motivating a refined universal abstraction in utcc

Our first example refers to the π calculus-like mobility of local links. Consider the common
scenario where a process P sends a request to a service offered by a process Q and includes
in the request a local link on which it expects the reply. This can be modeled in utcc
using a constraint system CS = (Σ,∆) where Σ includes the predicates req, rep, and res,
and the constant 0. The processes P and Q are defined as

P = (local z)
(
tell (req(z)) ‖ (λ y; rep(z, y)) next (tell (res(y)))

)
and

Q = (λ x; req(x)) tell (rep(x, 0))

The predicates req and rep are used for the request and reply respectively, and the predicate
res is used to report the result (and successful termination of P). The local operator is
used to create a local variable z representing the local link.

15

The intention is that only the processes P and Q can synchronize via the local link z.
However, the generality of abstraction in utcc makes it possible to violate this intention:
Another process E = (λ x, y; rep(x, y)) skip in parallel with the processes P and Q given
above would be able to guess the link z (as well as the result) from the reply.

It is instructive to see how this could be avoided using the π-calculus, where the two
processes could be modeled by

P = (νz)
(
req〈z〉 ‖ z〈y〉.res〈y〉

)
and Q = req(x).x〈0〉

In this case, the z and y are used differently in receiving the reply: The z is used as
the communication channel and y is the binder for the received name. Another process
in parallel would not be able to guess the channel z. As we will see below, our proposed
type system for patterns allows to introduce this kind of distinction between the uses of
variables in predicates.

Our second motivating example is from modeling of security protocols, where as pointed
out in [BRNN04] it it should be impossible for an agent to abstract variables if a one-way
function has been applied to it. Consider a unary predicate o (used for output of messages
to the network) and an encryption function enc(m, k) which represents the encryption of
the variable m with the key k. A process P that sends out a local message n encrypted
by a local key k can be represented by P = (local k, n) tell (o(enc(n, k))). However, in
utcc a spy process defined as S = (λ x, z; o(enc(x, z))) tell (o(x) ∧ o(z)), will succeed in
retrieving and publishing both the key and the encrypted message.

As for the π-like channels, our proposed type system for patterns will allow us to rule out
universal abstraction of variables to which a one-way function has been applied. Further,
to be able to allow abstraction of the message when the key is locally known, we propose
a novel kind of abstraction assuming local knowledge, which generalizes the universal
abstraction of utcc.

3.2.2 Types for secure abstraction patterns in utcc

Based on the two motivating examples above, we argue that there are basically two sorts
of arguments in functions and predicates: the ones that can be universally quantifiable,
which means that one would be able to use the abstraction operator for a variable in that
argument in order to find a possible matching, and the ones that are not.

We will thus divide the arguments of predicates and functions in two sorts and write
P(̃t; t̃′) and f (̃t; t̃′) for respectively the predicate P and function f where both ~t and ~t′ are
tuples of terms over the function signature F, and ~t denotes the restricted arguments and
~t′ the unrestricted ones. We assume that both arguments of the equality predicate are
restricted. If a predicate or function has either only restricted or unrestricted parameters
and the sort is clear from the context, we will simply write P(̃t) and f (̃t).

The sorted predicates allow us to use a binary predicate piout(x; y) representing the π-like
communication of y (the object) on the channel x (the subject). By defining that the
subject is a restricted argument and the object an unrestricted argument we obtain the
required asymmetry in the roles of the variables. The type rules for patterns should then

16

forbid the abstraction (λ x; piout(x, y)) P , as it would allow us to identify all channels (also
channels not known to us) containing a particular message y. However, they should allow
the abstraction (λ y; piout(x, y)) P , reflecting that we can compute the possible messages
on a channel x known to us. That is, we want to capture that if we know the values of
the restricted variables, then we may abstract (i.e. compute all possible matches for) the
unrestricted variables.

Similarly, sorted functions allow us to represent semantically that some functions are one-
way functions such as the function enc(k,m) described above for encrypting the message
m by the key k. Sorting both arguments as restricted will ensure that e.g. the abstractions
(λ ~x; o(enc(k,m))) P will be forbidden for any non-empty ~x ⊆ {k,m} Thus, even if the
single argument of the o predicate is unrestricted (i.e. we can abstract all messages avail-
able on the network) then we can not compute the inverse of the encryption function. We
may have functions for which an inverse is assumed to exist, such as a function tup2(x, y)
for making a pair of x and y. In that case it makes sense to allow abstractions over the
two arguments by sorting them as unrestricted.

In general, patterns may be a conjunction of several predicates and thus variables may
occur both restricted and unrestricted in the same pattern. An example of this is the
abstraction (λ y, z; c) P , where c = piout(y, z) ∧ piout(x, y). We argue that this pattern
should be allowed, since it is possible first to match the unrestricted y in piout(x, y) and
then subsequently, for the given y, match the unrestricted z in piout(y, z). Note that
it is not enough simply to require the abstracted variables to occur unrestricted: Both
variables x and y appear unrestricted in the abstraction (λ x, y; piout(x, y) ∧ piout(y, x)) P ,
but neither of the two basic constraints can be matched without abstracting a restricted
variable. As solution we define a set of type rules for constraints used as patterns in
abstractions which capture that there exists an order of the basic constraints in which the
first occurrence of each variable is unrestricted.

To allow abstractions in cases where the inverse key of the encryption is known we add a
new rule RA→ given in Equation 3.1 in addition to the SOS rules pictured in Figure 2.1.
RA→ allows for abstractions using constraints of the form c⇒ c′, that is, assuming local
knowledge c and a global store d, one can infer c′. The idea is to infer c′ using c but
without publishing it permanently to the store, as captured by the following operational
rule:

RA→
d ∧ c c′ [̃t/x̃] |̃t| = |x̃| d ∧ c ff⇒ d ff

〈(λ ~x; c⇒ c′) P, d〉 −→ 〈P [~t/~x] ‖ (λ ~x; c⇒ (c′ ∧ (x̃ 6= t̃)) P, d〉
(3.1)

The condition d ∧ c ff⇒ d ff ensures that local assumptions do not make the store
inconsistent when combining with the constraint store.

The typing rules for secure patterns and processes are defined in Figure 3.1. For simplicity
we assume patterns are simply conjunction of predicates applied to terms over the function
signature. The typing rules use an environment Γ = ΓR; ΓU , where ΓR is the set of names
used restricted and ΓU is the set of names used unrestricted. When the distinction does
not matter we simply write Γ. We employ three inductively defined functions on terms
over the function signature: unr(t), res(t), and var(t) yielding respectively the variables

17

Tpred
ΓR; ΓU ` P(~t;~t′) : pat

ΓR = var(~t) ∪ res(~t′) and ΓU = unr(~t′)\ΓR

Tassoc
Γ ` c1 ∧ (c2 ∧ c3) : pat

Γ ` (c1 ∧ c2) ∧ c3 : pat
Tcommute

Γ ` c1 ∧ c2 : pat

Γ ` c2 ∧ c1 : pat

Tcomb
ΓR

1 ; ΓU
1 ` c1 : pat ΓR

2 ; ΓU
2 ` c2 : pat

ΓR; ΓU ` c1 ∧ c2 : pat
ΓR = (ΓR

1 ∪ ΓR
2)\ΓU

1 and ΓU = (ΓU
1 ∪ ΓU

2)\ΓR
1

Tskip ` skip : sec
Ttell ` tell (c) : sec

Tpar
` P : sec ` Q : sec

` P ‖ Q : sec
Tnext

` P : sec

` next (P) : sec

Tbang
` P : sec

` !P : sec
Tunls

` P : sec

` unless cnextP : sec

Tabs
` P : sec ΓR; ΓU ` c : pat

` (λ ~x; d =⇒ c) P : sec
~x ⊆ dom(ΓU)\fv(d) Tloc

` P : sec

` (local ~x; c) P : sec

Figure 3.1: Typing rules for secure patterns and processes

appearing unrestricted in t according to the sorting, the variables appearing restricted
in t, and all variables appearing in t. We extend the functions to vectors of terms by
unr(~t) = ∪1≤i≤|~t|unr(ti) (and similarly for res and var). Formally, the functions are
given by unr(x) = res(x) = var(x) = {x} for any variable x, and unr(f(~t;~t′)) = unr(~t′),
res(f(~t;~t′)) = res(~t), and var(f(~t;~t′)) = var(~t) ∪ var(~t′). Note that obviously var(t) =
res(t)∪unr(t) but also that res(t)∩unr(t) may be non-empty, i.e. a variable may appear
both restricted and non-restricted.

The rule TPred captures that all variables in ~t as well as the variables occurring restricted
in ~t′ in the predicate P(~t;~t′) are restricted. The rest of the variables are unrestricted. The
rules Tasoc and Tcommute allow us to change the ordering of the basic constraints. Finally,
the rule Tcomb identifies the restricted and unrestricted variables in the joint pattern c1 ∧ c2

assuming that c1 is matched first. That is, a variable is restricted if it appears restricted in
either of the sub patterns c1 and c2 and not unrestricted in c1. (If it appears unrestricted
in c1 it will be instantiated if c1 is matched first, and thus it is allowed to appear restricted
in c2). Dually, the unrestricted variables in the joint pattern c1 ∧ c2 are the variables that
appear unrestricted in either of the sub patterns c1 and c2, and do not appear restricted
in c1.

The objective of the type system is to determine the secure patterns, therefore typing rules
over processes are rather simple. The only non-trivial rule is the rule Tabs for abstractions,
which ensure that c is a valid pattern such that the abstracted variables are unrestricted,
and no variables in the local d are abstracted.

Theorem 2 (Termination of type checking). For any process P the type-checking process
terminates.

Proof. (Sketch) Follows from the fact that there are only finitely many permutations of

18

basic constraints (predicates) in a pattern.

The following lemmas are used to prove subject reduction.

Lemma 1 (Constraint substitution does not affect pattern typing). Given ΓR; ΓU ` c : pat
and t and x, then ΓR

′
; ΓU

′ ` c[t/x] : pat and ΓU\ (fv(t) ∪ {x}) ⊆ ΓU
′\ (fv(t) ∪ {x}).

Proof. (Outline) The proof proceeds by induction on the type inference of ΓR; ΓU ` c : pat.

Lemma 2 (Constraint substitution does not affect process typing). Given a typing judg-
ment ` P ′ : sec then ` P ′[t/x] : sec.

Proof. (Outline) The proof proceeds by induction on the type inference of ` P ′ : sec

Lemma 3 (Structural equivalence preserves typing). Given P,Q processes, if P ≡ Q and
` P : sec , then ` Q : sec.

Proof. The proof proceeds by trivial case analysis over the structural congruence rules in
Definition 3.

Next we check that secure processes can not be made insecure during an internal transition
step.

Lemma 4. If 〈P, c〉 −→ 〈Q, d〉 and ` P : sec , then ` Q : sec.

Proof. (Outline) The proof proceeds by induction on the depth of the inference 〈P, c〉 −→
〈Q, d〉 and using the definition of ` P : sec.

Finally, we show that if a process P is well-typed, it can not perform any internal steps,
and its future is defined then the future of P is also well-typed.

Lemma 5. For all ` P : sec, if F (P) is defined and ∃d.〈P, d〉 6−→ then ` F (P) : sec.

Proof. (Outline) The proof proceed by induction in the definition of F (P).

We now have all the ingredients to prove subject reduction.

Theorem 3 (Subject-reduction). If P
(c,d)

======⇒ Q and ` P : sec , then ` Q : sec .

Proof. Assume P
(c,d)

======⇒ Q and ` P : sec, then by rule Ro we get that 〈P, c〉 −→n

〈Q′, d〉 6−→ and Q = F (Q′). We proceed by induction in n.

In the base case where n = 0, we have that Q′ = P and c = d. It follows from lemma 5
that ` F (Q′) : sec.

19

For the induction step, assume 〈P, c〉 −→1 〈P ′, c′〉 −→n 〈Q′, d〉 6−→. Then ` P ′ : sec by
lemma 4 and thus we get by induction that ` F (Q′) : sec.

3.3 Applications

This section illustrates the use of the type system with some examples in mobility and
security. First, let us return to the π calculus example.

We assume the syntactic sugar x〈y〉 stands for the binary predicate piout(x; y) and repre-
sents the use of the (restricted) channel x with the (unrestricted) message y. The following
type inference show that we can quantify over either x or y for the pattern y〈x〉 ∧ x〈y〉:

x; y ` x〈y〉 : pat
Tpred

y;x ` y〈x〉 : pat
Tpred

x; y ` x〈y〉 ∧ y〈x〉 : pat
Tcomb

The way to read the first inference is that we can abstract y if we know x. Conversely, a
second inference from the same pattern can lead to a typing of the form y;x ` y〈x〉∧x〈y〉 :
pat, capturing the fact that one can abstract x if we know y. However, note that we can
not infer ε;x, y ` x〈y〉∧ y〈x〉 : pat, and thus we are not allowed to simultaneously quantify
over x and y.

To illustrate the application of utccs in the security domain, we follow the lines of the
Security Protocol Language (SPL) [CW01] and SCCP [OV08b] to define a specification
language for security protocols that we have called the Security Protocol Concurrent Con-
straint Programming (SPCCP) language. The SPCCP embeds utccs in a syntax suitable
for defining security protocols, capturing process specifications with respect to input and
output events over a global network. The SPCCP language combines the best ideas from
SPL and SCCP by having a simple notion of pattern matching as in SPL and using the
constraint system to model the attackers ability to combine and split messages as in SCCP.
Hereto we add the new concept of pattern matching under local knowledge, which allow
us to syntactically guarantee that only message parts inferable from the available keys are
extracted, which can not be guaranteed in SPL nor in SCCP .

Definition 6 (SPCCP). The Secure Concurrent Constraint Programming language SCCP [OV08b]
is redefined by the following grammar:

Values v,v’ = x | k

Keys k = pub(x) | priv(x) | sym(x)

Messages and patterns M,N = v | (M1, . . . ,Mn) | {M}k

Processes R = nil | local(x) inR | out(M) .R
| in∀~x[N]~k.R | !R | R ‖ R

,

20

Ek−dec
c o(k−1(x)) c o(enc(k(x),m))

c o(m)
, for k ∈ {sym, pub}, sym−1 = sym,

and pub−1 = priv

Eenc
c o(x) c o(y)

c o(enc(x, y))
Ek−key

c o(x)
c o(k(x))

, for k ∈ {sym, pub, priv}

Etupn

c o(i1) . . . c o(in)
c o(tupn(i1, . . . , in))

Eproj
c o(tupn(i1, . . . , in))

c o(ij)
j ∈ {1, . . . , n}

Figure 3.2: Entailment relation for a security constraint system.

where x range over a set of variables and the subscript ~k in in∀~x[N]~k.R is a set of keys.

We define the semantics of SPCCP by giving a translation into utccs with a security
constraint system given by the signature Σ with a single (unrestricted) unary predicate
o(t) used for message output, and function symbols F = {enc, pub, priv, sym, tupn}, and
entailment relation given in Fig. 3.2 inspired on the requirements stated by Dolev and Yao
in [DY81].

The binary function enc takes two unrestricted arguments: a key and a message. The key
is intended to be either a symmetric, private, or public key generated by the (restricted)
unary functions sym(x), priv(x), or pub(x) respectively. Letting k ∈ {pub, priv, sym} and
defining sym−1 = sym, and pub−1 = priv, the entailment rule scheme Ek−dec for decryption
expresses how enc acts as symmetric or asymmetric encryption. The n-ary (unrestricted)
tupling functions tupn allow to create n-ary tuples, from which the individual elements
can be projected as expressed by the entailment rule Eproj. As usual, the rules Eenc,Ek−key,
and Etupn express that the output of any function of known output values can be inferred.

The messages/patterns of SPCCP are mapped to the terms generated by the corresponding
function symbols and variables in the security constraint system, using the usual notation
(M1, . . . ,Mn) for n-tuples and {M}k for enc(k,M). For a message M of SPCCP let v(M)
denote the set of variables in M . For a set of values ~v = {v1, v2, . . . , vi} let o(~v) be short
for o(v1) ∧ o(v2) ∧ . . . ∧ o(vi), and in particular o(∅) = tt.

We are now ready to define the encoding of SPCCP in utccs .

Definition 7 (SPCCP encoding).

[[R]] :

skip if R = nil
(localx) [[R′]]utcc if R = local(x) inR′

tell (o(M)) ‖ next ([[R′]]utcc) if R = out(M) .R′

(λ ~x; o(k̃)⇒ o(N) ∧ o(x̃)) next ([[R′]]utcc) if R = in∀~x[N]~k.R
′

![[R′]]utcc if R =!R′

[[R′]]utcc ‖ [[R′′]]utcc if R = R′ ‖ R′′

We will focus on outlining process constructions for pattern matching and network output.
The remaining process constructions are mapped directly to the corresponding construct
in utccs : nil, R ‖ R′ and !R have the usual meaning of inaction, parallel composition and
replication in process calculi; out(M). R adds the constraint o(M) to the constraint store

21

and subsequently in the next time period behaves as (the encoding of) R.

SPCCP differs from SCCP in the treatment of keys and the input operation: priv(x), pub(x),
and sym(x) yields respectively the private, public and symmetric key from generator x.
The input operator written as in∀~x[N]~k.P should be read as “for all possible messages
~m (available under the assumption of knowing the keys ~k) such that N [~m/~x] is available
as message at the network evolve into P [~m/~x]”. Intuitively, the idea is to check if ~m is
available as knowledge assuming locally that the keys in ~k are available as knowledge, and
if so, bind the variables in P occurring in the pattern N with the corresponding values
in ~m. The pattern matching resembles the pattern matching construct in SPL. The key
difference is that it proceed for all possible matches, and that we employ the new rule for for
universal abstraction under local knowledge introduced in the previous section to allow the
use of private keys as local information to perform the decryption of messages. Note that
we also require that all the abstracted values can be inferred as output. This guarantees
that secret values are not abstracted, and result in well-typeness of the encoding.

Proposition 1 (SPCCP maps to well-typed utccs processes). For any SPCCP process
P , ` [[P]] : sec.

3.3.1 Protocols

In Fig. 3.3 below we recall the protocol steps of the Needham-Schröeder-Lowe protocol
[Low95] (herewith referred as NSL) used as example in [CW01].

(1) A→ B : {m,A}pub(B)

(2) B → A : {m,n,B}pub(A)

(3) A→ B : {n}pub(B)

Figure 3.3: Needham-Schröeder-Lowe protocol with public-key encryption

The NSL protocol describes the interaction between agents A and B. First A sends to B a
nonce along its agent name, encrypted with B’s public key. Then B decrypts the message
with his own private key extracting A’s nonce. Next, B sends a message to A containing
the proof of reception along with a fresh name encrypted under A’s public key. Finally, A
decrypts B’s message and sends to B the name challenge received in the previous message
encrypted with B’s public key. The SPCCP version of the protocol is given in Fig. 3.4.

SPCCP share some similarities with the approaches in LYSANS [BRNN04], SCCP , and
the SPL calculus. Particularly, observe that there is no need to explicitly define the com-
munication channels in which agents are transmitting messages. The underlying model
acts as an open network in which every actor can access all the messages posted provided
that he has the proper keys to decrypt its the message. We assume a disclosure of pub-
lic keys for every agent, while the private keys are kept secret for each principal. The
key difference between the approach in SPCCP to the approaches in SPL and SCCP is
that the abstraction of the contents of a message encrypted with a key is only allowed
if one possesses the corresponding key for decryption. This is similar to the approach in
the LYSANS calculus [BRNN04], except that we employ the constraint system and local
knowledge instead of tailoring the pattern matching with a notion of key pairs.

22

Init(A,B, kA, pB) = new(m) out({m,A}pB).
in∀x[{m,x,B}pub(kA)]priv(kA).

out({x}pB).nil

Resp(A,B, kB, pA) = in∀y[{y,A}pub(kB)]priv(kB).

new(n) out({y, n,B}pA).
in∀[{n}pub(kB)]priv(kB).nil

System(A,B) = new(kA) new(kB) (Init(A,B, kA, pub(kB))
‖ Resp(A,B, kB, pub(kA)))

Figure 3.4: NSL protocol in SPCCP

The following specification exemplifies the translation into utccs :

Init(A,B, kA, pB) = (local m) tell (o({〈m,A〉}pB
)

‖ next (((λ x; o(priv(kA))⇒ (o({m, x,B}pub(kA)) ∧ o(x))))
‖next (tell (o({x}pubB

)) ‖ next (skip)))

Resp(A,B, kB, pA) = (λ y; o(priv(kB))⇒ (o({y,A}pub(kB)) ∧ o(y)))
‖ next (((local n) tell (o({y, n,B}pA

)))
‖next ((λ ∅; o(priv(kB))⇒ (o({n}pub(kB)))) ‖ next (skip)))

System(A,B) = (local kA) (local kB) Init(A,B, kA, pub(kB))
‖ Resp(A,B, kB, pub(kA))

3.4 Conclusions and Future Work

We have illustrated that the introduction of universal quantification to CCP for model-
ing mobile communication and security protocols introduce the problem that information
which should be local can be obtained by universal quantification. As a way to remedy
the problems we have proposed a simple type system for constraints used as patterns
in abstractions which allows us to guarantee semantically that e.g. channel names and
encrypted values are only extracted by agents that are able to infer the channel or non-
encrypted value from the store. Furthermore, we proposed a novel kind of abstraction
allowing abstraction under the assumption of local knowledge. The latter can be applied
to infer the plain text of encrypted messages under the assumption of knowledge of the key,
without adding the key permanently to the global store. We exemplified the type system
by examples of mobility of local links (in the context of the π-calculus) and provided a new
language for security protocols combining the key features of the Security CCP (SCCP)
language and the SPL calculus, but adding the ability to syntactically constraining the
ability to decrypting secret values inspired by the LYSANS calculus.

The present work is only in its first stage. However, we believe that the proposed dis-
tinction between variables that can be universally quantified and variables that can not
is an elegant way to remedy the problems we have illustrated connected to the univer-

23

sal quantification to CCP. A next step will be to perform a detailed investigation of the
proposed new variant of the SCCP calculus and applications to model security protocols.
In particular, we plan to investigate the application of the analysis techniques for SCCP ,
SPL and LYSANS to the SPCCP language.

It is important to remark the importance of the current proposal with respect to other
analysis techniques for security protocols. In [Bla01], a framework for the analysis of
secrecy properties is proposed with logic programming as its underlying mechanism. The
specification language follows the line of the equational theory presented in the Applied
π-calculus [AF01], encoding constructor and destructor functions by means of deduction
rules in the framework. Here, pattern-matching is being used to encode the abilities
of an attacker to abstract away information from the facts present in the store. Given
that the attacker can apply the set of rules in a given specification, the correctness of
the analysis relies on the power we give on the inference system. For instance, a rule
attacker(sign(m, sk))→ attacker(sk) could be specified and the attacker would be able to
extract away the secret key from a signature. We believe that a type system similar to
the one proposed in this paper can be applied here to limit the extra expressive power
of the rule-based approach by allowing only to abstract only variables over unrestricted
parts of the predicates, ruling out the example given above by declaring sk a restricted
variable over sign(m, sk). Similar considerations can be applied to other systems that base
their analysis on pattern-matching techniques, like the extended strand-space approach in
[CE02] and Miller’s linear logic approach for security protocols [Mil03].

As also pointed out in the text the local operator of utcc does not really correspond to the
generation of new names in nominal calculi. This has already been noticed by Palamidessi
et al. [PSVV06], where a logical characterization of name restriction using the existential
quantifier does not ensure uniqueness in the fragment of the π-calculus with mismatch.
The same occurs in utcc: a process (local x) (local y) P can hide both x and y from the
store, but the current logical formulation does not ensure the uniqueness of x and y, as
one may wish when dealing with nonces for security protocols. We leave for future work
to study variants of the local operator ensuring uniqueness.

24

4 Towards a Unified Framework for Declarative
Structured Communications

4.1 Introduction

Motivation. From the viewpoint of reasoning techniques, two main trends in modeling in
Service Oriented Computing (SOC) can be singled out. On the one hand, an operational
approach focuses on how process interactions can lead to correct configurations. Typical
representatives of this approach are based on process calculi and Petri nets (see, e.g.,
[vdA98, BBC+06, LVMR07, LPT07]), and count with behavioral equivalences and type
disciplines as main analytic tools. On the other hand, in a declarative approach the focus is
on the set of conditions components should fulfill in order to be considered correct, rather
than on the complete specification of the control flows within process activities (see, e.g.,
[vdAP06, PvdA06]). Even if these two trends address similar concerns, we find that they
have evolved rather independently from each other.

The quest for a unified approach in which operational and declarative techniques can
harmoniously converge is therefore a legitimate research direction. In this paper we shall
argue that Concurrent Constraint Programming (CCP) [Sar93] can serve as a foundation
for such an approach. Indeed, the unified framework for operational and logic techniques
that CCP provides can be fruitfully exploited for analysis in SOC, possibly in conjunction
with other techniques such as type systems. Below we briefly introduce the CCP model
and then elaborate on how it can shed light on a particular issue: the analysis of structured
communications.

CCP [Sar93] is a well-established model for concurrency where processes interact with each
other by telling and asking for pieces of information (constraints) in a shared medium,
the store. While the former operation simply adds a given constraint to the store (thus
making it available for other processes), the latter allows for rich, parameterizable forms of
process synchronization. Interaction is thus inherently asynchronous, and can be related
to a broadcast-like communication discipline, as opposed to the point-to-point discipline
enforced by formalisms such as the π-calculus [SW01]. In CCP, the information in the
store grows monotonically, as constraints cannot be removed. This condition is relaxed
in timed extensions of CCP (e.g., [SJG94, NPV02]), where processes evolve along a series
of discrete time units. Although each unit contains its own store, information is not
automatically transferred from one unit to another. In this paper we shall adopt a CCP
process language that is timed in this sense.

In addition to the traditional operational view of process calculi, CCP enjoys a declarative

25

nature that distinguishes it from other models of concurrency: CCP programs can be seen,
at the same time, as computing agents and as logic formulas [Sar93, NPV02, OV08b], i.e.,
they can be read and understood as logical specifications. Hence, CCP-based languages
are suitable for both the specification and verification of programs. In the CCP language
used in this paper, processes can be interpreted as linear-time temporal logic formulas; we
shall exploit this correspondence to verify properties of our models.

This Work. We describe initial results on the definition of a formal framework for the
declarative analysis of structured communications. We shall exploit utcc [OV08a], a
timed CCP process calculus, to give a declarative interpretation to the language defined
by Honda, Vasconcelos, and Kubo in [HVK98] (henceforth referred to as HVK). This
way, structured communications can be analyzed in a declarative framework where time
is defined explicitly. We begin by proposing an encoding of the HVK language into utcc

and studying its correctness. We then move to the timed setting, and propose HVKT, a
timed extension of HVK. The extended language explicitly includes information on session
duration, allows for declarative preconditions within session establishment constructs, and
features a construct for session abortion. We then discuss how the encoding of HVK into
utcc straightforwardly extends to HVKT.

A Compelling Example. We now give intuitions on how a declarative approach could be
useful in the analysis of structured communications. Consider the ATM example from
[HVK98, Sect. 4.1], given below:

ATM (a, b) = accept a(k) in k![id];

k �

deposit : request b(h) in
k?(amt) in h� deposit;
h![id, amt];ATM(a, b)
‖ withdraw : request b(h) in
k?(amt) in h� withdraw;h![id, amt];

h�

{
success : k � dispense; k![amt];ATM(a, b)
‖ failure : k � overdraft;ATM(a, b)

}
‖ balance : request b(h) in h� balance;h?(amt) in
k![amt];ATM(a, b)

Table 4.1: ATM process specification

Here, an ATM has established two sessions: the first one with a user, sharing session k

over service a, and the second one with the bank, sharing session h over service b. The
ATM offers deposit, balance, and withdraw operations. When executing a withdraw,
if there is not enough money in the account, then an overdraft message appears to the
user. It is interesting to analyze what occurs when this scenario is extended to consider
a card reader that acts as a malicious interface between the user and the ATM. The user
communicates his personal data with the reader using the service r, which will be kept
by the reader after the first withdraw operation to continue withdrawing money without
the authorization of the user. A greedy card reader could even withdraw repeatedly until
causing an overdraft (labelled “over”), as expressed below:

26

Reader = accept r(k′) in k′?(id) in
request a(k) in k![id];

k′ �

withdraw : k′?(amt) in
k � withdraw; k![amt];
k � {dispense : k′ � dispense; k![amt];R(k, amt) ‖ over : Q}

R(j , x) = def R′ in k � withdraw; j![x]; j � {dispense : j?(amt) in R′ ‖ over : Q}

User = request r(k′) in k′![myId];
k′ � withdraw; k′![58]; k′ � {dispense : k′?(amt) in P ‖ over : Q}

By creating sessions between them, the card reader Reader is able to receive the user’s
information, and to use it later by attempting a session establishment with the bank.
Following authentication steps (not modeled above), the card reader allows the user to
obtain the requested amount. Additional withdrawing transactions between the reader
and the bank are defined by the recursive process R. In the specification above, the process
Q can be assumed to send a message (through a session with the bank) representing the
fact that the account has run out of money: Q = kbank![0]; inact.

Even in this simple scenario, the combination of operational and declarative reasoning
techniques may come in handy to reason about the possible states of the system. Indeed,
while an operational approach can be used to describe an operational description of the
compromised ATM above, the declarative approach can complement such a description by
offering declarative insights regarding its evolution. For instance, assuming Q as above,
one could show that a utcc specification of the ATM example satisfies the linear temporal
logic formula 3 out(kbank, 0), which intuitively means that in presence of a malicious card
reader the user’s bank account will eventually reach an overdraft status.

Related Work. One approach to combine the declarative flavor of constraints and process
calculi techniques is represented by a number of works that have extended name-passing
calculi with some form of partial information (see, e.g., [VP98, DRV98]). The crucial
difference between such a strand of work and CCP-based calculi is that the latter offer a
tight correspondence with logic, which greatly broadens the spectrum of reasoning tech-
niques at one’s disposal. Recent works similar to ours include CC-Pi [BM07] and the
calculus for structured communications in [CDC09]. Such languages feature elements that
resemble much ideas underlying CCP (especially [BM07]). The main difference between
our approach and such works is that we adhere to the use of declarative reasoning tech-
niques based on temporal logic as an effective way of complementing operational reasoning
techniques. In [BM07], the reasoning techniques associated to CC-Pi are essentially op-
erational, and used to reason about service-level agreement protocols. In [CDC09], the
key for analysis is represented by a type system which provides consistency for session
execution, much as in the original approach in [HVK98].

27

4.2 Preliminaries

4.2.1 A Language for Structured Communication

We begin by introducing HVK, a language for structured communication proposed in
[HVK98]. We assume the following conventions: names are ranged over by a, b, . . . ; chan-
nels are ranged over by k, k′; variables are ranged over by x, y, . . . ; constants (names, in-
tegers, booleans) are ranged over by c, c′, . . . ; expressions (including constants) are ranged
over by e, e′, . . . ; labels are ranged over by l, l′, . . . ; process variables are ranged over by
X,Y, Finally, u, u′, . . . denote names and channels. We shall use ~x to denote a se-
quence (tuple) of variables x1...xn of length n = |~x|. Notation ~x will be similarly applied
to other syntactic entities. The sets of free names/channels/variables/process variables of
P , is defined in the standard way, and are respectively denoted by (·), fc(·), fv(·), and
fpv(·). Processes without free variables or free channels are called programs.

Definition 8 (The HVK language [HVK98]). Processes in HVK are built from:

P,Q ::= request a(k) in P Session Request
| accept a(k) in P Session Acceptance
| k![~e]; P Data Sending
| k?(~x) in P Data Reception
| k � l;P Label Selection
| k � {l1 : P1 ‖ · · · ‖ ln : Pn} Label Branching
| throw k[k′]; P Channel Sending
| catch k(k′) in P Channel Reception
| if e then P else Q Conditional Statement
| P | Q Parallel Composition
| inact Inaction
| (νu)P Hiding
| def D in P Recursion
| X[~e~k] Process Variables

D ::= X1(x1k1) = P1 and · · ·and Xn(xnkn) = Pn
Declaration for Recursion

Operational Semantics of HVK. The operational semantics of HVK is given by the reduc-
tion relation −→h which is the smallest relation on processes generated by the rules in
Figure 4.1. In Rule Str, the structural congruence ≡h is the smallest relation satisfying
: 1) P ≡h Q if they differ only by a renaming of bound variables (alpha-conversion). 2)
P | inact ≡h P , P | Q ≡h Q | P , (P | Q) | R ≡h P | (Q | R). 3) (νu)inact ≡h inact,
(νuu′)P ≡h (νu′u)P , (νu)(P | Q) ≡h (νu)P | Q if x /∈ fv(Q), (νu)(def D in P) ≡h
(def D in ((νu)P)) if u /∈ fv(D). 4) (def D in P) | Q ≡h def D in (P | Q) if fpv(D) ∩
fpv(Q) = ∅. 5) def D in (def D′ in P) ≡h def D and D′ in P if fpv(D) ∩ fpv(D′) = ∅.

Let us give some intuitions about the language constructs and the rules in Figure 4.1.
The central idea in HVK is the notion of a session, i.e., a series of reciprocal interactions
between two parties, possibly with branching, delegation and recursion, which serves as an
abstraction unit for describing structured communication. Each session has associated a

28

Link request a(k) in Q | accept a(k) in P −→h (νk)(P | Q)

Com (k![~e];P) | (k?(~x) in Q) −→h P | Q[~c/~x] if e ↓ ~c

Label k � li;P | k � {l1 : P1 ‖ · · · ‖ ln : Pn} −→h P | Pi (1 ≤ i ≤ n)

Pass throw k[k′];P | catch k(k′) in Q −→h P | Q

If1 if e then P else Q −→h P (e ↓ tt)

If2 if e then P else Q −→h Q (e ↓ ff)

Def def D in (X[~e~k] | Q) −→h def D in (P [~c/~x] | Q) (e ↓ ~c,X(~x~k) = P ∈ D)

Scop P −→h P
′ implies (νu)P −→h (νu)P ′

Par P −→h P
′ implies P | Q −→h P

′ | Q

Str If P ≡h P ′ and P ′ −→h Q
′ and Q′ ≡h Q then P −→h Q

Figure 4.1: Reduction Semantics of HVK (−→h)[HVK98].

specific port, or channel. Channels are generated at session initialization; communications
inside the session take place on the same channel.

More precisely, sessions are initialized by a process of the form request a(k) in Q

| accept a(k) in P . In this case, there is a request, on name a, for the initiation of
a session and the generation of a fresh channel. This request is matched by an accepting
process on a, which generates a new channel k, thus allowing P and Q to communicate
each other. This is the intuition behind rule Link. Three kinds of atomic interactions
are available in the language: sending (including name passing), branching, and channel
passing (also referred to as delegation). Those actions are described by rules Com, Label,
and Pass, respectively. In the case of Com, the expression ~e is sent on the port (session
channel) k. Process k?(~x) in Q then receives such a data and executes Q[~c/~x], where ~c
is the result of evaluating the expression ~e. The case of Pass is similar but considering
that in the constructs throw k[k′];P and catch k(k′) in Q, only session names can be
transmitted. In the case of Label, the process k � li;P selects one label and then the
corresponding process Pi is executed. The other rules are self-explanatory.

For the sake of simplicity, and without loss of generality (due to rule 5 of ≡h), in the
sequel we shall assume programs of the form def D in P where there are not procedure
definitions in P .

29

4.2.2 utcc’s Derived Constructs.

From a programming language perspective, variables ~x in (λ ~x; c) P can be seen as the
formal parameters of P . This way, recursive definitions of the form

X(~x) def= P

can be encoded in utcc as:

R[[X(~x) def= P]] =! (λ ~x; callx(x̃)) P̂ (4.1)

where callx is an uninterpreted predicate (a constraint) of arity |~x|. Process P̂ is obtained
from P by replacing recursive calls of the form X(~t) with tell (callx(̃t)). Similarly, calls of
the form X(~t) in other processes are replaced with tell (callx(̃t)).

Let out be an uninterpreted predicate. One could attempt at representing the actions
of sending and receiving as in a name-passing calculus (say, k! [~e] and k?(~x) in P , resp.)
with the utcc processes tell(out(k,~e)) and (λ ~x; out(k, x̃)) P , respectively. Nevertheless,
since these processes are not automatically transferred from one time unit to the next one,
they will disappear right after the current time unit, even if they do not interact. To cope
with this kind of behavior, we shall define versions of (λ ~x; c) P and tell(c) processes that
are persistent in time. More precisely, we shall use the process (wait ~x; c) do P , which
transfers itself from one time unit to the next one until, for some ~t, c[~t/~x] is entailed by the
current store. Intuitively, the process behaves like an input that is active until interacting
with an output. When this occurs, the process outputs the constraint c[~t/~x], as a way of
acknowledging the successful read of c. When |~x| = 0, we shall write whenever c do P

instead of (wait ~x; c) do P . Similarly, we define tell(c) for the persistent output of c until
some process “reads” c. These processes can be expressed in the basic utcc syntax as
follows (in all cases, we assume stop, go /∈ fv(c)):

tell(c) def= (local go, stop) (tell(out′(go)) ‖! when out′(go) do tell(c) ‖
! unless out′(stop) next tell(out′(go)) ‖
! when c do ! tell(out′(stop)))

(wait ~x; c) do P
def= (local stop, go) (tell(out′(go)) ‖! unless out′(stop) next tell(out′(go))

‖! (λ ~x; c ∧ out′(go)) (P ‖! tell(out′(stop)))
(wait ~x; c) do P

def= (wait ~x; c) do (P ‖ tell(c))

Notice that once a pair of processes tell and wait interact, their continuation in the
next time unit is a process able to output only a constraint of the form ∃x out′(x) (e.g.,
∃stop(out′(stop))). We define the following equivalence relation that allows us to abstract
from these processes.

Definition 9 (Observables). Let ∼o be the output equivalent relation in Definition 4. We
say that P and Q are observable equivalent, notation P ∼obs Q, if P ‖! tell(∃xout′(x)) ∼o

Q ‖! tell(∃xout′(x)).

Using the previous equivalence relation, we can show the following.

30

Proposition 2. Assume that c(~x) is a predicate symbol of arity |~x|.

1. If d 6 c[~t/~x] for any ~t then (wait ~x; c) do P
(d,d)

===⇒ (wait ~x; c) do P .

2. If P ≡u tell(c(~t)) ‖ (wait ~x; c(~x)) do nextQ then P ===⇒∼obs Q[~t/~x].

4.3 A Declarative Interpretation for Structured Communications

The encoding [[·]] from HVK into utcc is defined in Table 4.4. Two noteworthy aspects
when considering such a translation are determinacy and timed behavior. Concerning
determinacy, it is of uttermost importance to recall that while utcc is a deterministic
language, HVK processes may exhibit non-deterministic behavior. Moreover, while HVK is
a synchronous language, whereas utcc is asynchronous. Consider, for instance, the HVK

process:
P = k![~e];Q1 | k![~e′];Q2 | k?(~x) in Q3

Process P can have two possible transitions, and evolve into k![~e′];Q2 | Q3[~e/~x] or into
k![~e];Q1 | Q3[~e′/~x]. In both cases, there is an output that cannot interact with the input
k?(~x) in Q3. In utcc, inputs are represented by abstractions which are persistent during
a time unit. As a result, in the encoding of P we shall observe that both outputs react
with the same input, i.e. that [[P]] ===⇒ [[Q3[~e/~x]]] ‖ [[Q3[~e′/~x]]].

As for timed behavior, it is crucial to observe that while HVK is an untimed calculus,
utcc provides constructs for explicit time. In the encoding we shall advocate a timed
interpretation of HVK in which all available synchronizations between processes occur at
a given time unit, and the continuations of synchronized processes will be executed in the
next time unit. This will prove convenient when showing the operational correspondence
between both calculi, as we can relate the observable behavior in utcc and the reduction
semantics in HVK.

Let us briefly provide some intuitions on [[·]]. Consider HVK processes P = request a(k) in P ′

and Q = accept a(x) in Q′. The encoding of P declares a new variable session k and
sends it through the channel a by posting the constraint req(a, k). Upon reception of the
session key (local variable) generated by [[P]], process [[Q]] adds the constraint acc(a, k)
to notify the acceptance of k. They can then synchronize on this constraint, and execute
their continuations in the next time unit. The encoding of label selection and branching is
similar, and uses constraint sel(k, l) for synchronization. We use the parallel composition∏
1≤i≤n

when l = li do next [[Pi]] to execute the selected choice. Notice that we do not

require a non-deterministic choice since the constraints l = li are mutually exclusive. As
in [HVK98], in the encoding of if e then P else Q we assume an evaluation function
on expressions. Once e is evaluated, ↓ e is a constant boolean value. The encoding of
def D in P exploits the scheme described in Equation 4.1.

Operational Correspondence. Here we study an operational correspondence property for
our encoding. The differences with respect to (a)synchrony and determinacy discussed
above will have a direct influence on the correspondence. Intuitively, the encoding falls

31

[[request a(k) in P]] = (local k) (tell(req(a, k)) ‖ whenever acc(a, k) do next [[P]])
[[accept a(k) in P]] = (wait k; req(a, k)) do (tell(acc(a, k)) ‖ next [[P]])

[[k![~e];P]] = tell(out(k,~e)) ‖ whenever out(k,~e) do next [[P]]
[[k?(~x) in P]] = (wait ~x; out(k, ~x)) do next [[P]]

[[k � l;P]] = tell(sel(k, l)) ‖ whenever sel(k, l) do next [[P]]
[[k � {l1 : P1 ‖ . . . ‖ ln : Pn}]] = (wait l; sel(k, l)) do

∏
1≤i≤n

when l = li do next [[Pi]]

[[throw k[k′];P]] = tell(outk(k, k′)) ‖ whenever outk(k, k′) do next [[P]]
[[catch k(k′) in P]] = whenever outk(k, k′) do next [[P]]

[[if e then P else Q]] = when e ↓ tt do next [[P]] ‖ when e ↓ ff do next [[Q]]
[[P |Q]] = [[P]] ‖ [[Q]]

[[inact]] = skip
[[(νu)P]] = (localu) [[P]]

[[def D in P]] =
∏

Xi(xiki)∈D
R[[Xi(xiki)]]P̂

Table 4.4: Encoding from HVK into utcc. R[[·]] and P̂ are defined in Equation 4.1.

short for HVK programs featuring the kind of non-determinism that results from “un-
even pairings” between session requesters/providers, label selection/branching, and in-
puts/outputs as in the example above.

We thus find it convenient to appeal to the type system of HVK to obtain some basic
determinacy of the source terms. Roughly speaking, the type discipline in [HVK98] ensures
a correct pairing between actions and co-actions once a session is established. Although
the type system guarantees a correct match between (the types of) session requesters and
providers, it does not rule out the kind of non-determinism induced by different orders
in the pairing of requesters and providers. We shall then require session providers to be
always willing to engage into a session. This is, given a channel a, we require that there
is at most one accept process (possibly replicated) on a that is able to synchronize with
every process requesting a session on a. Notice that this requirement is in line with a
meaningful class of programs, namely those described by the type discipline developed in
[BHY08, BHY01].

Before presenting the operational correspondence, we introduce some auxiliary notions.

Definition 10 (Processes in normal form). We say that a HVK process P is in normal
form if takes the form inact or def D in ν~u(Q1 | · · · | Qn) where neither the operators
“ν” and “|” nor process variables occur in the top level of Q1, . . . , Qn.

The following proposition states that given a process P we can find a process P ′ in normal
form, such that: either P ′ is structurally congruent to P , or it results from replacing the
process variables at the top level of P with their corresponding definition (using rule Def).

Proposition 3. For all HVK process P there exists P ′ in normal form s.t. P −→∗h≡h P ′
only using the rules Def and Str in Figure 4.1.

32

Proof. Let P be a process of the form def D in Q where there are no procedure definitions
in Q. By repeated applications of the rule Def, we can show that P −→∗h P ′ where P ′

does not have occurrences of processes variables in the top level. Then, we use the rules of
the structural congruence to move the local variables to the outermost position and find
P ′′ ≡h P ′ in the desired normal form.

Notice that the rules of the operational semantics of HVK are given for pairs of processes
that can interact with each other. We shall refer to each of those pairs as a redex.

Definition 11 (Redex). A redex is a pair of complementary processes composed in parallel
as in:

(1)request a(k) in P | accept a(k) in Q

(2)k![~e];P | k?(~x) in Q

(3)throw k[k′];P | catch k(k′) in Q

(4)k � l;P | k � {l1 : P1 ‖ · · · ‖ ln : Pn}

Notice that a redex in HVK synchronizes and reduces in a single transition as in (k![~e];P) |
(k?(~x) in Q) −→h P | Q[~e/~x]. Nevertheless, in utcc, the encoding of the processes above
requires several internal transitions for adding the constraint out(k,~e) to the current store,
and for “reading” that constraint by means of (wait ~x; out(k, ~x)) do next [[Q]] to later
execute next [[Q[~e/~x]]]. We shall then establish the operational correspondence between
an observable transition of utcc (obtained from a finite number of internal transitions)
and the following subset of reduction relations over HVK processes:

Definition 12 (Outermost Reductions). Let P ≡h def D in ν~x(Q1 | · · · |Qn) be an HVK

program in normal form. We define the outermost reduction relation P ===⇒h P
′ as the

maximal sequence of reductions P −→∗h P ′ ≡h def D in ν ~x′(Q′1 | · · · |Q′n) such that for
every i ∈ {1, ..n}, either

1. Qi = if e then R1 else R2 −→h R1/2 = Q′i;

2. for some j ∈ {1, ..n}, Qi|Qj is a redex such that Qi|Qj −→h ν~y(Q′i|Q′j), with ~y ⊆ ~x′;

3. there is no k ∈ {1, ..n} such that Qi |Qk is a redex and Qi ≡h Q′i.

One may argue that the above-presented definition may rule out some possible reductions
in HVK. Returning to the concerns about determinacy, an outermost reduction filters out
cases where there are more than one possible reduction for a set of parallel processes (i.e.:
the parallel composition of two outputs and one input with the same session key). The
use of outermost reductions gives us a subset of possible reductions in HVK that keeps
synchronous processes and discard processes that are not going to interact in any way
(recall that in the typing discipline of HVK the composition of an input and an output
with the same session key will consume the channel used; hence, every other process
sending information over the same session will not have any complementary process to
synchronize with).

33

In the sequel we shall thus consider only HVK processes P where for n ≥ 1, if P ≡h
P1 ===⇒h P2 ===⇒h · · · ===⇒h Pn and P ≡h P ′1 ===⇒h P

′
2 ===⇒h · · · ===⇒h P

′
n

then Pi ≡h P ′i for all i ∈ {1, .., n}, i.e., P is a deterministic process.

Theorem 4 (Operational Correspondence). Let P,Q be deterministic HVK processes in
normal form and R,S be utcc processes. It holds:
1) Soundness: If P ===⇒h Q then, for some R, [[P]] ===⇒ R ∼obs [[Q]];
2) Completeness: If [[P]] ===⇒ S then, for some Q, P ===⇒h Q and [[Q]] ∼obs S.

Proof. Assume that P ≡h def D in ν~x(Q1 | · · · |Qn) andQ ≡h def D in ν ~x′(Q′1 | · · · |Q′n).

1. Soundness. Since P ===⇒h Q there must exist a sequence of derivations of the
form P ≡h P1 −→h P2 −→h ... −→h Pn ≡h Q. The proof proceeds by induction on
the length of this derivation, with a case analysis on the last applied rule. We then
have the following cases:

(a) Using the rule If1. It must be the case that there existsQi ≡h if e then R1 else R2

and Qi −→h R1 ≡h Q′i and e ↓ tt. One can easily show that when e ↓
tt do next [[Q′i]] ===⇒ [[Q′i]].

(b) Using the rule If2 Similarly as for If1.

(c) Using the rule Link. It must be the case that there exist i, j such that
Qi ≡h request a(k) in Q′i and Qj ≡h accept a(x) in Q′j and then Qi | Qj −→h

(νk)(Q′i | Q′j). We then have a derivation

[[Qi]] ‖ [[Qk]] −→∗ (local k; c) (R′i ‖ whenever acc(a, k) do next [[Q′i]] ‖
(wait k′; req(a, k′)) do (tell(acc(a, k′)) ‖ next ([[Q′j]]))

−→∗ (local k; c′) (R′i ‖ whenever acc(a, k) do next [[Q′i]] ‖
R′j ‖ tell(acc(a, k)) ‖ next ([[Q′j [k/k

′]]])

−→∗ (local k; c′′) (R′i ‖ R′j ‖ next [[Q′i]] ‖ next ([[Q′j [k/k
′]]]) 6−→

where c = req(a, k), c′ = c ∧ req(a, k), c′′ = c′ ∧ acc(a, k) ∧ acc(a, k) andR′i, R
′
j

are the processes resulting after the interaction of the processes in the parallel
composition tell(req(a, k)) ‖ (wait k′; req(a, k′)) do · · · , i.e.:

R′i ≡u (local go, stop; out′(go) ∧ out′(stop) ∧ c(~t))
next ! unless out′(stop) next tell(out′(go)) ‖ next ! tell(out′(stop))

R′j ≡u (local stop′, go′; out′(go′) ∧ c(~t) ∧ out′(stop′)) next ! tell(out′(stop′))
‖ next ! unless out′(stop′) next tell(out′(go′))
‖ (λ ~x; c ∧ out′(go′) ∧ x̃ 6 .= t̃) (Q ‖ tell(c(~t)) ‖! tell(out′(stop′))
‖ next ! (λ ~x; c ∧ out′(go′)) (Q ‖ tell(c(~t)) ‖! tell(out′(stop′))

We notice that R′i ‖ R′j 6−→ and it is a process that can only output the con-
straint out′(x) where x is a local variable. By appealing to Proposition 2 we
conclude [[Qi]] ‖ [[Qj]] ===⇒∼obs (local k) ([[Q′i]] ‖ [[Q′j]]).

(d) The cases using the rules Label and Pass can be proven similarly as the case
for link.

34

2. Completeness. Given the encoding and the structure of P , we have a utcc process
R = [[P]] s.t.

R ≡u (local ~x) ([[Q1]] ‖ ... ‖ [[Qn]]) .

Let Ri = [[Qi]] for 1 ≤ i ≤ n. By an analysis on the structure of R, if Ri −→ R′i then
it must be the case that either (a) Ri = when e do next [[Q′i]] and R′i = next [[Q′i]] or
(b) 〈Ri, c〉 −→ 〈R′i, c∧d〉 where d is a constraint of the form req(·), sel(·), out(·), or
outk(·). In both cases we shall show that there exists a R′′i such that Ri −→∗ R′′i 6−→
such that Qi −→h Q

′
i and R′′i = next [[Q′i]].

(a) Assume that Ri = when e ↓ tt do next [[Q′i]] for some Q′i. Then it must be the
case that Qi = if e then Q′i else Q′′i . If e ↓ tt we then have R′′i = next [[Q′i]].
The case when e ↓ ff is similar by considering Ri = when e ↓ ff do Q′i.

(b) Assume now that 〈Ri, c〉 −→ 〈R′i, c ∧ d〉 where d is of the form req(·), sel(·),
out(·) or outk(·). We proceed by case analysis of the constraint d. Let
us consider only the case d = ∃k(req(a, k)); the cases in which d takes the
form sel(·), out(·), or outk(·) are handled similarly. If d = ∃k(req(a, k))
for some a, then we must have that Qi ≡h request a(k) in Q′i for some
i. If there exists j such that Qj ≡h accept a(x) in Q′j , one can show a
derivation similar to the case of the rule Link in soundness to prove that
Ri ‖ Rj −→∗∼o (local k) (next [[Q′i]] ‖ next [[Q′j]]). If there is no Qj such
that Qi |Qj forms a redex, then one can show by using (1) in Proposition 2
that Ri ===⇒∼obs Ri .

4.4 A Timed Extension of HVK

We now propose an extension to HVK in which a bundled treatment of time is explicit and
session closure is considered. More precisely, the HVKT language arises as the extension
of HVK processes (Def. 8) with refined constructs for session request and acceptance, as
well as with a construct for session abortion:

Definition 13 (A timed language for sessions). HVKT processes are given by the following
syntax:

P ::= request a(k) during m in P Timed Session Request
| accept a(k) given c in P Declarative Session Acceptance
| · · · { the other constructs, as in Def. 8 }
| kill ck Session Abortion

The intuition behind these three operators is the following: request a(k) during m in P

will request a session k over the service name a during m time units. Its dual construct
is accept a(k) given c in P : it will grant the session key k when requested over the
service name a provided by a session and a successful check over the constraint c. Notice
that c stands for a precondition for agreement between session request and acceptance. In

35

c, the duration m of the corresponding session key k can be referenced by means of the
variable durk . In the encoding we syntactically replace it by the variable corresponding to
m. Finally, kill ck will remove ck from the valid set of sessions.

[[request a(k) during m in P]] = (local k) tell(req(a, k,m)) ‖
whenever acc(a, k) do next (
tell(act(k)) ‖
Gact(k)([[P]]) ‖
! [m]unless kill(k) next tell(act(k)))

[[accept a(k) given c in P]] = (wait k; req(a, k,m) ∧ c[m/durk]) do
(tell(acc(a, k)) ‖ nextGact(k)([[P]]))

[[kill k]] = ! tell(kill(k))

Table 4.5: Encoding of HVKT. Gd(P) is in Definition 14.

Adapting the encoding in Table 4.4 to consider HVKT processes is remarkably simple (see
Table 4.5). Indeed, modifications to the encoding of session request and acceptance are
straightforward. The most evident change is the addition of the parameter m within the
constraint req(a, k,m). The duration of the requested session is suitably represented as a
bounded replication of the process defining the activation of the session k represented as
the constraint act(k). The execution of the continuation [[P]] is guarded by the constraint
act(k) (i.e. P can be executed only when the session k is valid). Thus, in the encoding
we use the function Gd(P) to denote the process behaving as P when the constraint d can
be entailed from the current store, doing nothing otherwise. More precisely:

Definition 14. Let G : C → Procs→ Procs be defined as:

Gd(skip) =skip

Gd(P1 ‖ P2) =Gd(P1) ‖ Gd(P2)

Gd(tell(c)) =when d do tell(c)

Gd(!Q) =!Gd(Q)

Gd(nextQ) =when d do nextGd(Q)

Gd((λ ~x; c) Q) =(λ ~x; c) Gd(Q) if ~x /∈ fv(d)

Gd(unless c nextQ) =when d do unless c nextGd(Q)

Gd((local ~x; c)Q) =(local ~x; c)Gd(Q) if ~x /∈ fv(d)

On the side of session acceptance, the main novelty is the introduction of c[m/durk]. As
explained before, we syntactically replace the variable durk by the corresponding duration
of the session m. This is a generic way to represent the agreement that should exist
between a service provider and a client; for instance, it could be the case that the client is
requesting a session longer than what the service provider can or want to grant.

36

4.4.1 Case Study: Electronic booking

Here we present an example that makes use of the constructs introduced in HVKT.

Let us consider an electronic booking scenario. On one side, consider a company AC which
offers flights directly from its website. On the other side, there is a customer looking for
the best offers. In this scenario, the customer establishes a timed session with AC and
asks for a flight proposal given a set of constraints (dates allowed, destination, etc.). After
receiving an offer from AC, the customer can refine the selection further (e.g. by checking
that the prices are below a given threshold) and loops until finding a suitable option, that
he will accept by starting the booking phase. One possible HVKT specification of this
scenario is described in Table 4.6.

Customer = request ob(k) during m in (k![bookingdata];Select(k))

Select(k) = k?(offer) in (if (offer.price ≤ 1500) then k � Contract; else Select(k))

AC = accept ob(k) given durk ≤MAX TIME in (k?(bookingData) in
(νu)k![u]; k �

{
Contract : Accept ‖ Reject : kill k

}
)

Table 4.6: Online booking example with two agents.

In a second stage, the customer uses an online broker to mediate between him and a set of
airlines acting as service providers. Let n be the number of service providers, and consider
two vectors of fixed length: Offers, which contains the list [Offers0 , . . . ,Offersi , . . . ,Offersn]
of offers received by a customer, and SP , which contains the list of trusted services. First,
the customer establishes a session with the broker for a given period m; later on, he/she
starts requesting for a flight by providing the details of his/her trip to the broker. On the
other side, the broker will look into his pool of trusted service providers for the ones that
can supply flights that suit the customer’s requirements. All possible offers are transferred
back to the customer, who will invoke a local procedure Sel (not specified here) that selects
one of the offers by performing an output on name a. Once an offer is selected, the broker
will allow a final interaction between the customer and the selected service. He does so by
delegating to the customer the session key used previously between him and the chosen
service provider. Finally, the broker proceeds to cancel all those sessions concerning the
discarded services. An HVKT specification of this scenario is given in Table 4.7 where, for
the sake of readability, processes denoting post-processing activities are abstracted from
the specification.

A notable advantage in using HVKT as a modeling language is the possibility of exploiting
timed constructs in the specification of service enactment and service cancellation. In the
above scenario it is possible to see how HVKT allows (i) to effectively take explicit account
on the maximal times accepted by the customer: the composition of nested services can
take different speeds but the service broker will ensure that customers with low speeds
are ruled out of the communication; and (ii) to have a more efficient use of the available
resources: since there is not need to maintain interactions with discarded services, the
service broker will free those resources by sending kill signals.

37

Customer = request ob(k) during m in (k![bookingdata];
k?(n) in (∏
i∈n

(k?(Offersi) in (

Sel(Offers); a?(x) in k![x];
catch k(k′) in
k′![PaymentDetails]; inact))))

SP = accept SPi(k′i) given N ≤ 300ms in (
k′i?(bookingData) in
k′i![offer];
k′i?(paymentDetails) in inact)

Broker = accept ob(k) given m ≤ 500ms in (
k?(bookingData) in k![|SP |];
(νu)

∏
i∈|SP |

(request SPi(k′i) during N in

k′i![bookingData];
k′i?(offeri) in (u![offeri]; inact ‖ S (u, k)))
k?(y) in def X(Offers, k′1, . . . , k

′
n) = P in∏

i∈|SP |
(if (y = offersi) then (throw k [k ′i]; PostProc) else

kill k′i ‖ P (X − {offersi , k′i})))

S(u,k) =
∏

i∈|SP |
(u?(offeri) in inact ‖ k ![offeri]; inact)

Table 4.7: Online booking example with online broker.

4.4.2 Exploiting the Logic Correspondence

To exploit the logic correspondence we can draw inspiration from the constraint templates
put forward in [PvdA06], a set of LTL formulas that represent desirable/undesirable sit-
uations in service management. Such templates are divided in three types: existence
constraints, that specify the number of executions of an activity; relation constraints,
that define the relation between two activities to be present in the system; and negation
constraints, which are essentially the negated versions of relation constraints.

By appealing to Theorem 1, our framework allows for the verification of existence and
relation constraints over HVKT programs. Assume a HVKT program P and let F =
TL[[[[P]]]] (i.e., the FLTL formula associated to the utcc representation of P). For existence
constraints, assume that P defines a service accepting requests on channel a. If the service
is eventually active, then it must be the case that F 3∃k(acc(a, k)) (recall that the
encoding of accept adds the constraint acc(a, k) when the session k is accepted). A
slight modification to the encoding of accept would allow us to take into account the
number of accepted sessions and then support the verification of properties such as F
3(Nsessions(a) = N), informally meaning that the service a has accepted N sessions. This
kind of formulas correspond to the existence constraints in [PvdA06, Figure 3.1.a–3.1.c].
Furthermore, making use of the guards associated to ask statements, we can verify relation

38

constraints as eventual consequences over the system. Take for instance the specification
in Table 4.6. Let Accept be a process that outputs “ok” through a session h. We then
may verify the formula F ∃u(u.price〈1.500⇒ out(h, ok)). This is a responded existence
constraint describing how the presence of an offer with price less or equal than 1.500 would
lead to an acceptance state.

4.5 Concluding Remarks

We have argued for a timed CCP language as a suitable foundation for analyzing struc-
tured communications. We have presented an encoding of the language for structured
communication in [HVK98] into utcc, as well as an extension of such a language that
considers explicitly elements of partial information and session duration. To the best of
our knowledge, a unified framework where behavioral and declarative techniques converge
for the analysis of structured communications has not been proposed before.

Languages for structured communication and CCP process calculi are conceptually very
different. We have dealt with some of these differences (notably, determinacy) when stat-
ing an operational correspondence property for the declarative interpretation of HVK pro-
cesses. We believe there are at least two ways of achieving more satisfactory notions of
operational correspondence. The first one involves considering extensions of utcc with
(forms of) non-determinism. This would allow to capture some scenarios of session estab-
lishment in which the operational correspondence presented here falls short. The main
consequence of adding non-determinism to utcc is that the correspondence with FLTL
as stated in Theorem 1 would not longer hold. This is mainly because non-deterministic
choices cannot be faithfully represented as logical disjunctions (see, e.g., [NPV02]). While
a non-deterministic extension to tcc with a tight connection with temporal logic has been
developed (ntcc [NPV02]), it does not provide for representations of mobile links. Ex-
ploring whether there exists a CCP language between ntcc and utcc combining both
non-determinism and mobility while providing logic-based reasoning techniques is inter-
esting on its own and appears challenging. The second approach consists in defining a type
system for HVK and HVKT processes better suited to the nature of utcc processes. This
would imply enriching the original type system in [HVK98] with e.g., stronger typing rules
for dealing with session establishment. The definition of such a type system is delicate
and needs care, as one would not like to rule out too many processes as a result of too
stringent typing rules. An advantage of a type system “tuned” in this way is that one
could aim at obtaining a correspondence between well-typed processes and logic formulas,
similarly as the given by Theorem 1. In these lines, plans for future work include the
investigation of effective mechanisms for the seamless integration of new type disciplines
and reasoning techniques based on temporal logic within the elegant framework provided
by (timed) CCP languages.

The timed extension to HVK presented here includes notions of time that involve only
session engagement processes. A further extension could involve the inclusion of time
constraints over input/output actions. Such an extension might be useful to realistically
specify scenarios in which factors such as, e.g, network traffic and long-lived transactions,
prevent interactions between services from occurring instantaneously. Properties of inter-

39

est in this case could include, for instance, the guarantee that a given interaction has been
fired at a valid time, or that the nested composition of services does not violate a certain
time frame. We plan to explore case studies of structured communications involving this
kind of timed behavior, and extend/adjust HVKT accordingly.

40

5 A Logic for Choreography

5.1 Introduction

When analysing service oriented systems, either we describe the system as the exchange
of messages between different participants, or we consider the system as the composition
of the local behaviours of each participant. In this first view, known as choreography,
we consider the system as a whole, taking care only of the interfaces that participants
use when interacting to the outside world. In the second view, known as orchestration,
we model the system as perceived by the eyes of each participant, sending and receiving
messages but not knowing which other actors are present in a communication. A good
illustration can be seen in the way a soccer match is planned: the coach has an overall view
of the team, and organize how players will interact in each play (the role of a choreography)
while each player performs his role by interacting with each of the members of his team by
throwing/receiving passes. The way each player synchronize with other members of the
team represents the role of an orchestration.

The link between choreographies and orchestration has been proposed in [CHY07]. Here,
choreographies and orchestration constitute two interrelated approaches for modelling ser-
vices. Two languages are proposed: A Global calculus to model choreographies and the
End Point calculus to model orchestrations. Additionally, global and local specifications
has already been shown operational correspondent under certain conditions, and one can
generate an orchestrated model of a choreography by a mapping from the Global calculus
to the End Point Calculus (something known as the End Point Projection (EPP)).

In this chapter we present a joint work between the author, Marco Carbone and Thomas
Hildebrandt, aiming at leveraging the trustworthiness level of a system by providing a
clear methodology of specification and verification of structured communications. Our
goal is to provide service oriented systems with a logical characterization, both from the
global perspective or and from their end-point projections. Figure 5.1 illustrates the
approach for the specification and verification of service-oriented systems. We can analyse
a choreography C either by mapping a specification of global behaviour to a formula φC
describing the interaction between participants, and from here generate

⋃
i[[φi]], a set of

formulas describing the local behaviour of each participant. Similarly, we can start from
choreography C and then use an end point projection to generate the parallel composition
of the local behaviors of each participant involved in the communication; from here we can
study their logical meaning as the set of formulas generated for each participant, closing
the verification square.

41

C oo GL //

EPP
��

φC

LP
��∏

i[[Pi]] oo
LL

//
⋃
i[[φi]]

Figure 5.1: Methodology for Service - Oriented Verification

The end point projection between global and local specifications has been previously
presented in [CHY07], and their operational correspondence property allow us to move
from local to global perspectives and vice versa. Similarly, in a recent work [BHY08] a
Hennessy-Milner logic for typed π-calculi is introduced, providing the link between local
specifications and logics.

In this document we provide the link between choreographies and a logics (denoted as GL
in Figure 5.1). Starting with an extension of Hennesy-Milner logic [HM80], we provide a
proof system that allows for property verification of choreographies. The logic is sound ,
in terms that a choreography will always reflect a logical state of the system. Furthermore,
a final step would conclude a methodology for verification of structured communications.
The logic for choreographies should have a correspondent mapping to a logic to reason
about end-point projections. This step, denoted by the transformation LP between Global
and Local formulas, is left as as further work of the current document.

This chapter is organized as follows: In section 5.2 we describe the global calculus as
our reference language, with its syntax and operational semantics. Section 5.3 presents a
logical language to express properties about choreographies, giving several examples of its
use. Section 5.4 presents the proof system and correctness results while in 5.5 we discuss
the future work.

5.2 The Global Calculus

The Global calculus [CHY07] originates from Choreography Description Language (CDL),
a web service description language developed by W3C WS-CDL working group. The cal-
culus allows for the description of choreographies as interactions between participants by
means of message exchanges. The description of such interactions is centered on the notion
of a session, in which two interacting parties first establish a private connection and do
a series of interactions through that private connection, possibly interleaved with other
sessions. More concretely, an interaction between two parties starts by the creation of a
fresh session (set of session) channel(s), that later will be used as channels where mean-
ingful interactions take place. Each session is fresh and unique, so each communication
activity will be clearly separated from previous interactions by the use of the session. The
calculus is equipped with a label transition semantics describing how global descriptions
evolve, and a type discipline that describes the structured sequence of message exchanges
between participants.

42

5.2.1 Syntax.

The syntax of the global calculus [CHY06] is given by the following grammar.

C ::= A → B : a(k).C (init)

| (νk) C (newL)

| A → B : k〈e, y〉.C (com)

| (νa@A) C (newS)

| A → B : k[li : Ci]i∈I (choice)

| XA (recvar)

| C1 | C2 (par)

| µXA.C (rec)

| if e@A then C1 else C2 (cond)

| 0 (inaction)

C,C ′, . . . denote terms of the calculus, also called interactions; A,B,C, . . . range over
participants; k, k′, . . . are linear channels; a, b, c, . . . shared channels; v, w, . . . variables;
X,Y, . . . process variables; l, li, . . . labels for branching; and e, e′, . . . over arithmetic and
other first-order expressions.

(init) denotes a session initiation by A via B’s service channel a, with fresh session channels
k and continuation C. (comm) denotes an in-session communication over a session channel
k, where e is an expression. Note that y does not bind in C. (choice) denotes a labelled
choice over session channel k and set of labels I. C1 | C2 denotes the parallel product
between C1 and C2. (νk) C works the same as the name restriction operator in the π-
calculus, binding k in C. Since such a hiding is only generated by session initiation, we
assume that a hiding never occurs inside a prefix or a conditional. (cond) is the standard
conditional operator (e@A indicates that e is located at participant A). µXA.C denotes
recursion, where the variable XA is bound in C . 0 denotes termination. The free and
bound session channels and term variables are defined in the usual way. We often omit 0
and empty vectors.

5.2.2 Semantics.

We give the operational semantics in terms of a configurations 〈σ,C〉, where σ represents
the state of the system and C the choreography actually being executed. σ contains a set
of variables labelled by participants. A variable x labelled by participant A is written as
x@A. The same variable name labelled with different participant names denotes different
variables (hence σ@A(x) and σ@B(x) may differ).

We consider a set of labels ` = {init A→ B on a, com A→ B over s, sel A→ B over s :
li} denoting initiation, communication and selection of choreographies between partici-
pants A and B, while τ denotes the silent action given by evaluation of expressions.

Structural Congruence. The structural congruence ≡, is defined as the minimal congruence
relation on interactions C, such that ≡ is a commutative monoid wrt | and 0, and satisfies

43

(G-Init) (σ, A → B : a(k).C)
init A→B on a
−−−→ (σ, (νk) C)

(G-Com) σ′ = σ[x@B 7→ v] ∧ σ ` e@A ⇓ v ⇒ (σ, A → B : k〈e, x〉.C)
com A→B over s
−−−→ (σ′, C)

(G-IfT) σ ` e@A ⇓ tt ⇒ (σ, if e@A then C1 else C2)
τ

−−−→ (σ,C1)

(G-IfF) σ ` e@A ⇓ ff ⇒ (σ, if e@A then C1 else C2)
τ

−−−→ (σ, C2)

(G-Choice) (σ, A → B : k[li : Ci]i∈I)
sel A→B over s:li
−−−→ (σ, Ci)

(G-Par) (σ, C1)
`

−−−→ (σ′, C ′1) ⇒ (σ,C1 | C2)
`

−−−→ (σ′, C ′1 | C2)

(G-Struct) C ≡ C ′′ ∧ (σ, C)
`

−−−→ (σ′, C ′) ∧ C ′ ≡ C ′′′ ⇒ (σ, C ′′)
`

−−−→ (σ′, C ′′′)

(G-Res) (σ, C)
`

−−−→ (σ′, C ′) u ∈ {a, k} ⇒ (σ, (νu) .C)
`

−−−→ (σ′, (νu) .C ′)

Table 5.1: Operational Semantics for the Global Calculus

the following rules (≡α denotes alpha equivalence on terms):

C ≡ C ′ if C ≡α C ′

(νv) .C1|C2 ≡ (νv) .(C1|C2) if v 6∈ fn(C2) (5.1)

µXA.C ≡ C[µXA.C/XA]

An action in the semantics is defined using an intuitive notation, (σ,C)
`

−−−→ (σ′, C ′)
which says that a choreography C in a state σ (which is the collection of all local states
of the participants) executes an action ` and evolves into C ′ with a new state σ′ . This
idea comes from the small-step semantics given to imperative languages. We will write
C −→ C ′ when the states σ, σ′ and ` are irrelevant, and we will use −→∗ as the transitive
closure of −→ . The transition relation −→ is defined as the minimum relation on pairs
state/interaction satisfying the rules of Table 5.1.

Transition (G-Init) describes the evolution of a session initiation: after A initiates a
session with B on service channel a, A and B share k locally. This will be denoted by a
restriction of the session channel k over the continuation C, as denoted by (νk) .C. (G-

Com) describes the main interaction rule of the calculus: the expression e is evaluated into
v in the A-portion of the state σ and then assigned to the variable x located at B resulting
in the new state σ[x@B 7→ v]. (G-Choice) chooses the evolution of a choreography
resulting from a labelled choice over a session key k. (G-IfT) and (G-IfF) show the
possible paths that a deterministic evolution of a choreography can produce. (G-Par),
(G-Res) (G-Rec) and (G-Struct) behave as the standard rules for parallel product,
restriction, recursion and structural congruence.

In the sequel, we write C ↓` whenever either

• ` = init A→ B on a and C ≡ (ν~s) (A → B : a(s).C ′ | C ′′); or

• ` = com A→ B over s and C ≡ (ν~s) (A → B : s〈e, x〉.C ′ | C ′′)

44

• ` = sel A→ B over s : li and C ≡ (νs)(A → B : s[li : C ′i]i∈I | C ′′)

Similarly, we denote with C ↓τ the evaluation of expressions: C ↓τ if C ≡ if e@A then C1 else C2

and e@A ⇓ tt or e@A ⇓ ff.

5.2.3 Type discipline for the Global Calculus

Roughly speaking, the type discipline in [HVK98] ensures a correct pairing between actions
and co-actions once a session is established. We use a generalisation of session types
[HVK98] for global interactions, first presented in [CHY+09]. The grammar of types
follows.

α
def= Σis ↓ opi(θi).αi | Σis ↑ opi(θi).αi | α1 | α2 | end | µt.α | t (5.2)

where θ, θ′, . . . range over value types bool, string, int, α, α′, . . . are session types.
Σis ↓ opi(θi).αi is a branching input type at session channel s, indicating a process is
ready to receive any of the (pairwise distinct) operators in {opi}, each with a value of
type θi; Σis ↑ opi(θi).αi describes its co-type: a branching output type at s. Type α1 | α2

is a parallel composition of session types α1 and α2. The type end indicates session
termination and is often omitted. We take | to be commutative and associative with end.
µt.α indicates a recursive type with t as a type variable. µt.α binds the free occurrences
of t in α. We take an equi-recursive view on types, not distinguishing between µt.α and
its unfolding α[µt.α/t].

Session types in the global calculus are used to enforce a linear usage of the resources in the
communication between participants. A typing judgment has the form Γ ` C : ∆, where
Γ,∆ are service type and session type environments, respectively. Typically, Γ contains
a set of type assignments of the form a@A : (~k)α, which says that a service a located at
participant A may be invoked with a fresh ~s followed with a session α. ∆ contains types
assignments of the form ~k[A,B] : α which says that a vector of session channels ~k, all
belonging to the same session between participants A and B, has the session type α when
seen from the viewpoint of A.

The typing rules are omitted, and we refer to [CHY+09] for the full account of the type
discipline. As an example, take a simplified version of the booking scenario in section
4.4.1. Here, the customer establishes a session with the airline company AC using service
ob and creating session keys k1, k2. Once sessions are established, the customer will request
the company about a flight offer with his booking data, along the session key k1. The
airline company will process the customer request and will send a reply back with an offer
using the session key k2. The customer will eventually accept the offer, sending back an
acknowledgment to the airline company using k1. The following specification in the global
calculus represents the protocol:

45

COB =Cust → AC : ob(k1, k2).

Cust → AC : k1〈booking, x〉.
AC → Cust : k2〈offer, y〉.
Cust → AC : k1〈accept, z〉.0 (5.3)

Then, the service type of the airline company at channel ob is described as:

(k1, k2).k1 ↓ booking(string).k2 ↑ offer(int).k1 ↓ accept(int).end (5.4)

Remark 1. From now on, we will consider only choreographies that respect the linearity
conditions established by the typing discipline of the global calculus. All processes along
this chapter are considered to respect the typing discipline in [CHY+09].

5.3 A Logic for the Global Calculus

5.3.1 Syntax of the Logic.

In this section, we introduce a simple logic for choreography, inspired by the modal logic
for session types presented in [BHY08]. The logical language comprises assertions for
equality and value/name passing. The grammar of assertions is given in table 5.2.

φ ::= 〈`〉φ (action)
| ∃t.φ (exists)
| tt (true)
| e1 = e2 (equality)
| φ ∧ χ (and)
| ¬φ (neg)
| ◦φ (next)
| ♦φ (may)
| φ ∗ χ (separation)
| φ−∗χ (wand)

` ::= init A→ B on a (init)
| com A→ B over s (com)
| sel A→ B over s : l (branch)

Table 5.2: Assertions of Choreography logic

Choreography assertions (ranged over by φ, φ′, χ, . . .) give a logical interpretation of the
global calculus introduced in the previous section. The logic consists of the standard FOL

46

operators ∧, ¬, tt and ∃. In ∃t.φ, the variable t is meant to range over service and
session channels, participants, labels and basic placeholders for expressions. Accordingly,
it works as a binder in φ. In addition to the standard operators, we include an unspecified
(decidable) equality on expressions (e1 = e2) as in [BHY08]. Our operators depend on the
labels of the labelled transition system of the global calculus: 〈`〉φ represents the execution
of a labelled action ` followed by the assertion φ; ◦φ and ♦φ denote the standard next
and evenutally operators respectively. The spatial operator in φ ∗ χ denotes composition
of formulae: because of the unique nature of parallel composition in choreographies, we
have used the symbol ∗ (as in separation logic) in order to stress the fact that there is no
interference between two choreographies running in parallel. φ −∗χ is standardly defined
accordingly.

Remark 2 (Derived Operators). We can get the full account of the logic by deriving the
standard set of strong modalities from the above presented operators:

• ff = ¬tt,

• (e1 6= e2) = ¬(e1 = e2),

• φ ∨ χ = ¬(¬φ ∧ ¬χ),

• φ⇒ χ = ¬φ ∨ χ,

• ∀x.φ = ¬∃x.¬φ,

• 2φ = ¬♦¬φ,

• [`]φ = ¬〈¬`〉φ.

The following examples give an intuition of how these modalities combined with the exis-
tential operator ∃ allow to express properties of choreographies.

Example 5.1 (Availability). We would like to express that, given a service requester
(known as A in this setting) requesting the service a, there exists another participant in
the choreography providing a and A is invoking him. This can be formulated in the logic
as

∃x.init A→ x on a(s) (5.5)

Example 5.2 (Service Usage). We want to ensure that services available are actually
used. We can use the dual property for availability to specify that, for a service provider
B offering a, there exists a service requester different from B that will invoke a.

∃x.init x→ B on a(s) (5.6)

Example 5.3 (Coupling). We want to verify what is the level of connectedness between
two different participants in a choreography. One way to specify this is to ask for possible
services that this two participants are using in between. We can model that in the logic as
follows:

∃x.init A→ B on x(s) (5.7)

47

Example 5.4 (Causality Analysis). We can use the modal operators of the logic in order
to perform studies of the causal properties that our specified choreography can fulfill. For
instance, we can specify that given an expression e evaluated to true, then there is an
eventual firing of a choreography that satisfies property φ1, moreover, φ2 will never be
satisfied. Such a property can be specified as follows:

(e = tt) ∧ ♦(φ1) ∧2¬φ2 (5.8)

Example 5.5 (Fair Response). An interesting aspect of our logic is that it allows for the
declaration of partial specification properties regarding the interaction of the participants
involved in a choreography. Take for instance the interaction diagram in Figure 5.2:

Option 2

Option 1

A B C

Init a(s)

Init b(s')

s' (x)

s (x)

Init c(s'')

s'' (s)

s (x)

s' (s)

Figure 5.2: Alternatives for service synchronization

There, participant A invokes service b at B’s and then B invokes C’s service c. At this
point, C can send the content of variable x to A in two different ways: either by using
those originally established sessions, or by invoking a new service at A’s. However, at the
end of the either computation path, variable z (located at A’s) will contain the value of x.
In the global calculus:

C = A → B : b(k).B → C : c(k′).if e@C then C1 else C2 where

C1 = C → B : k′〈x, yB〉.B → A : k〈yB, z〉
C2 = C → A : a(k′′).C → A : k′′〈x, z〉

We argue that, under the point of view of A, both options are sufficiently good if, after
an initial interaction with B is established, there is an eventual response that binds the
variable z as a response. Such a property can be expressed in the logic by the formula:

∃X, k′′.〈init A→ B on a(k)〉 ♦
(
〈com X → A over k′′〉 ∧ z@A = x@C

)
(5.9)

Note that a third option for the protocol above is to use delegation. However, the current
version of the global calculus does not feature such an operation and we leave it as future
work.

Remark 3 (Connectedness). The work in [CHY07] proposes a set of criteria for guar-
anteeing a safe end-point projection between global and local specifications (note that the

48

choreography in the previous example does not respect such properties). Essentially, a valid
global specification have to fulfill three different criteria, namely Connectedness, Well-
threadedness and Coherence. It is interesting to see that some of this criteria relate to
global and local causality relations between the interactions in a choreography, and can be
easily formalized as properties in the choreography logic here presented. Below, we con-
sider the notion of connectedness and leave the other cases as future work. Connectedness
dictates a global causality principle in interaction. If A initiates any action (say sending
messages, assignment, etc) as a result of a previous event (e.g. message reception), then
such a preceding event should have taken place at A. In the sequel, let Interact(A,B)φ be
a predicate which is true whenever 〈`〉φ holds for some ` with an interaction from A to B.
Connectedness can then be specified as follows:

∀A,B.2
(

Interact(A,B)tt ⇒ ∃C.
(
Interact(A,B) Interact(B,C) tt∨ Interact(A,B) ¬〈`〉tt

))

Note that the above formalization is simpler than the definition given at [CHY06], that
is because the logical characterization of choreographies allow us to study interactions in
terms of their observable behaviour; further constructs (such as conditional behaviour,
recursion, . . .) will derive only more observable behaviour, as presented in Section 5.4.

5.3.2 Semantics of the Logic.

We now give a formal meaning to the assertions introduced above with respect to the
semantics of the global calculus introduced in the previous section. In particular we
introduce the notion of satisfaction. We write C |=σ φ whenever an environment σ and
a choreography C satisfy a formula φ. The relation |= is the minimum relation satisfying
the rules given in Table 5.3.

C |=σ e1 = e2 iff σ(e1) = σ(e2)
C |=σ tt iff tt
C |=σ φ ∧ χ iff C |=σ φ and C |=σ χ
C |=σ ¬φ iff C 6|=σ φ
C |=σ ∃t.φ iff C[w/t] |= φ (for some appropriate w)
C |=σ ♦φ iff C −→∗ C ′ and C ′ |=σ φ
C |=σ (νk) .φ iff C ≡ (νk)C ′ and C ′ |=σ φ
C |=σ ◦φ iff C −→ C ′ and C ′ |=σ φ
C |=σ φ ∗ χ iff C ≡ C1 | C2 s.t. C1 |=σ φ and C2 |=σ χ

C |=σ 〈`〉φ iff C
`−→ C ′ and C ′ |=σ φ

C |=σ φ−∗χ iff ∀C1 s.t. C | C1 well typed ∧ C1 |=σ φ then C | C1 |=σ χ

Table 5.3: Assertions of the Choreography Logic

Above, we assume that variables occurring in an expression e are always located e.g.
x@A. In the ∃t.φ case, w should be an appropriate value according to the type of t e.g.

49

a participant if t is a participant placeholder. A formula φ is a “logical consequence” of
a formula χ if every interpretation that makes φ true also makes χ true. In this case one
says that χ is logically implied by φ (φ⇒ χ).

Additional Definitions. A formula φ is a “logical consequence” of a formula χ if every
interpretation that makes φ true also makes χ true. In this case one says that χ is
logically implied by φ (φ⇒ χ).

Definition 15 (Semantic Equivalence). Let φ and χ two formulae in the choreography
logic. We say that φ is semantically equivalent to χ (denoted by φ ≡|= χ) if φ |= χ and
χ |= φ holds.

A sentence is satisfiable if there is some choreography under which it is true. A formula
with free variables is said to be satisfied by a choreography if the formula remains true
regardless which participants, names/values are assigned to its free variables. A formula
φ is valid if it is true in every choreography, that is ∀C;C |= φ.

5.4 Proof System

Here, the proof system is presented. In order to reason about judgments C |= φ, we propose
a proof (or inference) system for assertions of the form C ` φ. Intuitively, we want C ` φ
to be as approximate as possible to C |= φ (ideally, they should be equivalent). We
write C ` φ for the provability judgement where C is a process and φ contains formulae
composed from the grammar in Table 5.2.

Definition 16 (C ` φ). We say that C ` φ (C exhibits φ) iff the assertion C ` φ has a
proof in the system given in Table 5.4.

Pinit
C ` φ

A → B : a(k).C ` 〈init A→ B on a〉φ
Ppar

∀i∈{1,2} Ci ` φi
C1 | C2 ` φ1 ∗ φ2

Psel
∀i∈I Ci ` φi

A → B : k[li : Ci]i∈I `
∧
i∈I〈sel A→ B over li : s〉φi

Pres
C ` φ x is fresh

(νx) C ` νx.φ

Pcom
C ` φ

A → B : k〈e, y〉.C ` 〈com A→ B over s〉φ
Psub

C ` φ φ⇒ χ

C ` χ

Pif
C1 ` e⇒ φ C2 ` ¬e⇒ φ

if e then C1 else C2 ` ◦ φ
PInact

−
0 ` tt

Table 5.4: Proof system for the Global Calculus

50

Let us now describe some of the inference rules of the proof system. Pinact and is the
standard rule for inaction Psel can be explained as follows: suppose we are given a process
P = A → B : k[li : Ci]i∈I , a set of branch labels {li} (determined by typing) and we are
given a proof that each Ci satisfies φi, then we certainly have a proof saying that every
derivation of P should satisfy a guard li followed by a formula φi.

The initiation and interaction rule Pinit,Pcom behave similarly to Psel: given an initia-
tion/communication process in P and a proof that its continuation satisfies the proof
term φ, we can derive a proof that P will first exhibit an initiation/communication action
followed by φ. The conditional rule Pif is standard. The subsumption rule Psub is the
standard consequence rule as found in Hoare logic.

The rules for parallel composition and hiding are represented in Ppar and Pres respectively,
and they do not indicate the behaviour of a given choreography, but hint information about
the structure of the process: Ppar juxtaposes the behaviour of two processes and combines
their respective formulae by the use of a separation operator, Pres hides a variable x in a
formula φ; the intuition is that since (νx) C is a choreography C with x restricted, then
if C proves φ and x is a fresh variable, then (νx) C should satisfy φ with hidden x.

We now proceed to prove the soundness of the proof system with respect to the semantics
of assertions presented before.

Lemma 6 (Structural equivalence preserves Logical validity). If C ≡ C ′ and C ` φ, then
C ′ ` φ

Proof. It follows by trivial case analysis over ≡.

Theorem 5 (soundness). for any given choreography C, if C ` φ, then C |= φ.

Proof. It follows by induction on the derivation of `.

• Case PInact. We have that C = 0, then 0 ` tt and 0 |= tt immediately.

• Case Pinit. We have that C = A → B : a(k).C ′ and by Pinit then φ = 〈init A →
B on a〉φ′. We have to show that C |= 〈init A→ B on a〉φ′.
By definition, C |= 〈init A → B on a〉φ′ iff C ↓init A→B on a and ∃C ′ s.t. C −→∗
C ′ and C ′ |= φ′. Obviously, by applying (G-Init) on C we get C −→ (νk) .C ′; by
induction hypothesis we have that C ′ |= φ′, so we can use the assertion of (νx) .φ′

such that: C |= (νx) .φ′ iff C ≡ (νv).C ′ and C ′ |= φ(x 7→ v), and by using lemma 6
we have that (νx) .φ ≡|= φ with fresh x.

To prove C ↓init A→B on a, take ` = init A→ B on a, then we just have to check that
C ≡ (νs) .(A → B : a(s)).C ′ | C ′′ which we already know by taking C ′′ = 0 and
scope extension with (νs) and C ′′ = 0.

• Case Pcom. We have that C = A → B : s〈e, y〉.C ′ and by induction hypothesis
we have that C ′ |= φ′. We have to show that C |= 〈com A → B over s〉φ′ given
C ` 〈com A→ B over s〉φ′.
By definition, C |= 〈com A → B over s〉φ′ iff C ↓com A→B over s and ∃C ′ such that
C −→∗ C ′ and C ′ |= φ′. To prove C ↓com A→B over s, we have that C ↓` if ` =

51

com A → B over s and C ≡ (νs)(A → B : s〈e, x〉.C ′|C ′′), which is trivially true
using C ′′ = 0 and [y/x]. Moreover, we can apply (G-com) to get C −→ C ′, and by
induction hypothesis, C ′ |= φ′ so we are done.

• Case Psel. We have that C = A → B : k[li : C ′i]i∈I and C `
∧
i∈I〈sel A →

B over li : s〉φ. Because of Psel we have that ∀i∈ICi ` φi and by induction hypothesis,
∀i∈I Ci |= φi. We have to show that C |=

∧
i∈I〈sel A→ B over li : s〉φi.

By definition of the semantics of 〈`〉φ and conjunction, then:

C |=
∧
i∈I
〈sel A→ B over li : s〉φi iff

∧
i∈I

(C ↓sel A→B over li:s ∧∃C ′ s.t. C −→∗ C ′ ∧ C ′ |= φi)

Take ` = sel A → B over li : s for i ∈ I, then C |=
∧
i∈I〈`〉φi if ` = sel A →

B over li : s (trivially true) and if C ≡ (νs)(A → B : s[li : C ′i]i∈I |C ′′) which is
equivalent to C up-to substitution [s/k]. Moreover, ∃C ′ s.t. C −→∗ C ′ and C ′ |= φi
holds by induction hypothesis, so we are done.

• Case Pif . We have that C = if e then C1 else C2 , by induction hypothesis we have
that C1 ` e ⇒ φ and C2 ` ¬e ⇒ φ. We have to show that C |= ◦φ. Assume a σ

s.t. σ ` e@A ⇓ tt (The other case is symmetric), then we get by the use of (G-IfT)
with σ and C that (σ,C) −→ (σ,C1). Additionally we have that:

C1 ` e@A ⇓ tt⇒ φ

C1 ` ff ∨ φ
C1 ` φ

Then is easy to find that C ↓τ and that C1 = C ′ in ∃C ′ ∈ {[φ]} s.t. C −→ C ′, so we
are done.

• Case Pres. we have that C = (νx) .C ′ and by induction hypothesis we have
that C ′ ` φ and with x fresh variable. We have to show that C |= φ iff C ≡
(νu) .C ′ and C ′ ∈ {[φ(x 7→ v)]}. This follows straightforwardly: With x fresh, we
know that C ≡ (νu) C ′[x/u]. Similarly, from C ′ ` φ and fresh x and lemma 6 we
know that (νu) .C ′ |= φ(x 7→ u), so we are done.

• Case for Ppar: Immediate.

5.5 Future work

The work here presented constitutes just the first from the initial steps towards a verifica-
tion framework of structured communications. Our main concerns relate to (i) establish a
completeness relation between the choreography logic and its proof system, (ii) the ability
of integrate the proof system here presented with other logical frameworks for the speci-
fication of sessions, and (iii) the ability of reasoning about partial information within the

52

framework. In [BHY08], Berger et al. presented proof systems characterizing May/Must
testing preorders and bisimilarities over typed π-calculus processes. The connection be-
tween types and logics in such system comes in handy to restrict the shape of the processes
one might be interested, allowing us to consider such work as a suitable proof system for
the calculus of end points. Moreover, a connection between the global logic here presented
and the modal logic used in typed π-specifications results necessary, allowing us to project
a property satisfied in a choreography into sets of properties in π-calculus specifications.
Other improvements to the system proposed include the use of fixed points, essential for
describing state-changing loops, and auxiliary axioms describing not only structural prop-
erties of a choreography, but also expected results given by the interaction of one or more
choreographies.

53

6 Concluding Remarks

Along this report we have discussed different approaches for leveraging the confidence of
a service oriented specification. Instead of providing an unified model, we followed ideas
inspired in type systems, concurrency theory and modal logics, gaining a clear under-
standing on what a service oriented system is composed and the requirements that such
specifications should fulfill.

Chapter 3 started explored the trustworthiness of a system in terms of the security of its
communications. Given the utcc process calculus (introduced in Chapter 2), we showed
why the unrestricted abstraction present in the calculus allows for the leakage of secure
data in a communication, and we proposed a type system for constraints used as patterns in
process abstractions, which essentially allows us to distinguish between public information
and secure (non-leakable information) inside predicates. A link between the Concurrent
Constraint family of languages and languages for service oriented systems has been drawn
in Chapter 4, where a mapping between HVK and utcc has been proposed. Such a
link allows for a declarative study of structured communications using linear temporal
logic, and extends current languages for sessions with explicit constructions for timeouts
and session abortion. Finally, Chapter 5 moves away from the tradition of Concurrent
Constraint Programming but tackles a similar component in the specification of services:
the description of interactions in terms of choreographies. we reported initial steps towards
a methodology for the specification and verification of structured communications. We
presented a way to describe properties over global specifications. We introduced a proof
system that allows for verification of properties among participants in a choreography.
With such a logic, one can see the state of a choreography as a formula, and one can
check for satisfaction of desirable properties. Some examples of important properties on
structured communications are drawn, and we provide hints on how this work can be
extended towards a full verification framework for structured communications, closing
the gap between logics for choreography and their correspondent parts over an end-point
projection.

6.1 Future Directions

The following ideas emerge as directions for future work:

• Logics for Choreography.

Certainly the work presented in Chapter 5 represents the first and the clearest of in
our paths for future work. We want to complete the verification framework for chore-

54

ographies, expanding the choreography logic with completeness results that allow us
to guarantee that each formula in the logic is provable, and project choreographic
formulae into sets of specification formulae for its end point projections.

• Nominal Concurrent Constraint Programming.

One of the long-withstanding goals in the research of CCP languages has been
the correct representation of mobile behaviour over concurrent constraint programs.
When referring to mobile behaviour we can consider either link mobility, the ability
of the network to reconfigure the connections between nodes, or process mobility, the
ability to reconfigure the topology of the network. Link mobility has been modelled
in utcc [OV08a]. In the classical setting, CCP-like calculi have modelled the logical
view of a restriction operator as an existential quantifier over a constraint store. By
this formulation one can say that a variable x is private from the constraint store c

as no other process can know the contents of x in ∃x c, except the one that imposed
the constraint. In [PSVV06] it has been noticed that such a logical characterization
of name restriction using the existential quantifier does not ensure uniqueness in the
fragment of the π-calculus with mismatch: given ∃x ∃y c(x, y) we cannot say that x
is different than y, therefore the freshness of name generation cannot be guaranteed
(as previously discussed in Chapter 3).

Given the importance of freshness and uniqueness conditions when dealing with
sessions, we aim for a reformulation of the name hiding on cc-calculi using a different
conception. For doing so, we started working in a new variant of cc-calculi, herewith
called Fresh CCP, to deal with name generation. In fresh CCP, fresh name generation
is achieved by a redefinition of the underlying constraint system and the denotational
model of CCP with the use of nominal logic [Pit03], an extension of first order logic
with bundled notions of name swapping and fresh terms.

• Context - Sensitive Services.

Research in context-sensitive services aims at providing IT-technology operating
across and adapting to different contexts, e.g. location, time, activity, personal
preferences, history, gender, language/culture or work/private life. The simultane-
ous emergence of context-sensitive services and the widespread use of mobile devices
(phones, music players, navigators etc.) hold both great promise and great chal-
lenges. Namely, the promise of ubiquitous computing, and the dual challenges of
finding human-computer interaction methods, and advancing development technol-
ogy for service-oriented architectures to also support the notion of context. Following
the research line proposed in the Genie-Jingling project [STG+10], we started work
on the development of Context Sensitive type systems. The idea is that dynamic
orchestration of services are composed by parametric services. A parametric service
is a service oriented system with parametric interfaces and explicit dependencies.
The objective of providing such dynamicity within orchestration is to equip current
service specifications with versatile ways of composing new services given the re-
sources already deployed in a context. We are currently working in the definition of
a calculus for dynamically orchestrated parametric services, and type system for such
a language that excludes incorrect dependencies and features progress of well-typed
service orchestrations. Moreover, currently we are working on a implementation of
a type checker where the theory presented can be tested.

55

Bibliography

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, et al. Business process execution language for
web services, version 1.1. Standards proposal by BEA Systems, International
Business Machines Corporation, and Microsoft Corporation, 2003.

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure com-
munication. In POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 104–115, New York,
NY, USA, 2001. ACM Press.

[AG99] Mart́ın Abadi and Andrew D. Gordon. A Calculus for Cryptographic Protocols:
The SPi Calculus. Inf. Comput., 148(1):1–70, 1999.

[BBC+06] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins,
U. Montanari, A. Ravara, and D. Sangiorgi. SCC: a service centered calculus.
Proceedings of WS-FM, 4184:38–57, 2006.

[BHY01] Martin Berger, Kohei Honda, and Nobuko Yoshida. Sequentiality and the Pi-
Calculus. In S. Abramsky, editor, TLCA 2001, volume 2044 of Lecture Notes
in Computer Science, pages 29–45. Springer, Berlin Heidelberg, 2001.

[BHY08] Martin Berger, Kohei Honda, and Nobuko Yoshida. Completeness and logical
full abstraction in modal logics for typed mobile processes. In Luca Aceto, ed-
itor, ICALP’08, number 5126 in LNCS, pages 99–111. Springer-Verlag, Berlin
Germany, 2008.

[Bla01] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules. In 14th IEEE Computer Security Foundations Workshop (CSFW-14),
pages 82–96, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Computer
Society, Los Alamitos (2001).

[BM07] Maria Grazia Buscemi and Ugo Montanari. CC-Pi: A Constraint-Based Lan-
guage for Specifying Service Level Agreements. 16th European Symposium on
Programming (ESOP’07), 2007.

[BRNN04] M. Buchholtz, H. Riis Nielson, and F. Nielson. A calculus for control flow
analysis of security protocols. International Journal of Information Security,
2(3):145–167, 2004.

56

[CDC09] Mario Coppo and Mariangiola Dezani-Ciancaglini. Structured Communica-
tions with Concurrent Constraints. In TGC’08, volume 5474 of LNCS, pages
104–125. Springer, 2009.

[CE02] R. Corin and S. Etalle. An improved constraint-based system for the verifi-
cation of security protocols. In M. V. Hermenegildo and G. Puebla, editors,
9th Int. Static Analysis Symp. (SAS), volume 2477 of LNCS, pages 326–341,
Madrid, Spain, Sep 2002. Springer, Heidelberg.

[CHY06] M. Carbone, K. Honda, and N. Yoshida. A calculus of global interaction based
on session types. In 2nd Workshop on Developments in Computational Models
(DCM), ENTCS, 2006.

[CHY07] M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred
programming for web services. In 16th European Symposium on Programming
(ESOP’2007), held as part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2007, volume 4421 of Lecture Notes in Computer
Science, pages 2–17, Braga, Portugal, March 24–April 1 2007. Springer, Berlin
Heidelberg.

[CHY+09] M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown, and S. Ross-
Talbot. A Theoretical Basis of Communication-Centred Concurrent Program-
ming. Web Services Choreography Working Group mailing list, to appear as a
WS-CDL working report, 2009.

[CW01] Federico Crazzolara and Glynn Winskel. Events in security protocols. In ACM
Conference on Computer and Communications Security, pages 96–105, 2001.

[DRV98] J.F. Diaz, C. Rueda, and F. Valencia. A calculus for concurrent processes with
constraints. CLEI Electronic Journal, 1(2), 1998.

[DY81] Danny Dolev and Andrew C. Yao. On the security of public key protocols.
Technical report, Dept. of Computer Science, Stanford University, Stanford,
CA, USA, 1981.

[Eme91] E.A. Emerson. Temporal and modal logic. In Handbook of theoretical computer
science (vol. B), page 1072. MIT Press, 1991.

[FA01] M. Fiore and M. Abadi. Computing symbolic models for verifying crypto-
graphic protocols. Proc. 14th IEEE Computer Security Foundations Workshop,
pages 160–173, 2001.

[HL09] Thomas Hildebrandt and Hugo A. López. Types for Secure Pattern Matching
with Local Knowledge in Universal Concurrent Constraint Programming . In
P.M. Hill and D.S. Warren, editors, International Conference on Logic Pro-
gramming (ICLP), volume 5649 of Lecture Notes in Computer Science, pages
417–431. Springer, Berlin Heidelberg, 2009.

[HM80] M. Hennessy and R. Milner. On Observing Nondeterminism and Concurrency.
In Proceedings of the 7th Colloquium on Automata, Languages and Program-
ming, pages 299–309. Springer-Verlag London, UK, 1980.

57

[HVK98] K. Honda, V.T. Vasconcelos, and M. Kubo. Language Primitives and Type
Discipline for Structured Communication-Based Programming. Proceedings of
the 7th European Symposium on Programming: Programming Languages and
Systems, pages 122–138, 1998.

[L+01] F. Leymann et al. Web services flow language (WSFL 1.0), 2001.

[LHM08] Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao Mukkamala. The
Resultmaker Online Consultant: From Declarative Workflow Management in
Practice to LTL. In In Proc. of 1st International Workshop on Dynamic and
Declarative Business Processes (DDBP 2008), Munich, Germany, 2008.

[LOP09] Hugo A. López, Carlos Olarte, and Jorge A. Pérez. Towards a Unified
Framework for Declarative Structured Communications. In Programming
Language Approaches to Concurrency and Communication-cEntric Software:
PLACES’09, February 2009.

[Low95] Gavin Lowe. An attack on the needham-schroeder public-key authentication
protocol. Inf. Process. Lett., 56(3):131–133, 1995.

[LPP+06] Hugo A. López, Jorge A. Pérez, Catuscia Palamidessi, Camilo Rueda, and
Frank D. Valencia. A declarative framework for security: Secure concurrent
constraint programming. In Sandro Etalle and M. Truszczyński, editors, 22th
International Conference on Logic Programming (ICLP’06), volume 4079 of
Lecture Notes in Computer Science. Springer, Heidelberg, 2006.

[LPT07] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web
services. In Proc. of 16th European Symposium on Programming (ESOP’07),
volume 4421 of Lecture Notes in Computer Science, pages 33–47. Springer,
2007.

[LVMR07] I. Lanese, V.T. Vasconcelos, F. Martins, and A. Ravara. Disciplining Orches-
tration and Conversation in Service-Oriented Computing. Fifth IEEE Interna-
tional Conference on Software Engineering and Formal Methods (SEFM’2007),
pages 305–314, 2007.

[Mil95] Robin Milner. Communication and concurrency. Prentice Hall International
(UK) Ltd., Hertfordshire, UK, UK, 1995.

[Mil99] Robin Milner. Communicating and Mobile systems. The Pi Calculus. Cam-
bridge University Press, 1999.

[Mil03] Dale Miller. Encryption as an abstract data type: An Extended Abstract. In
Foundations of Computer Security (FCS), volume 84 of Electronic Notes in
Theoretical Computer Science, pages 3–15. Springer, Heidelberg, 2003.

[MP92] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems:
Specification. Springer, 1992.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, parts I and II. Journal of Information and Computation, 100:1–77,
September 1992.

58

[NPS05] Anders Kaare Nørgaard, Lars Pedersen, and Peter Strøiman. Method for gener-
ating a workflow on a computer, and a computer system adapted for performing
the method. Patent, 05 2005. US 6895573.

[NPV02] Mogens Nielsen, Catuscia Palamidessi, and Frank Valencia. Temporal concur-
rent constraint programming: Denotation, logic and applications. Nordic J. of
Computing, 2002.

[OV08a] Carlos A. Olarte and Frank D. Valencia. Universal concurrent constraint pro-
gramming: Symbolic semantics and applications to security. In 23rd Annual
ACM Symposium on Applied Computing (2008), 2008.

[OV08b] Carlos Alberto Olarte and Frank D. Valencia. The expressivity of universal
timed ccp. In 10th International ACM SIGPLAN Symposium on Principles
and Practice of Declarative Programming, Valencia, Spain, July 2008. ACM
Press, New York.

[Pit03] A.M. Pitts. Nominal logic, a first order theory of names and binding. Infor-
mation and computation, 186(2):165–193, 2003.

[PSVV06] C. Palamidessi, V. Saraswat, F.D. Valencia, and B. Victor. On the Expressive-
ness of Linearity vs Persistence in the Asychronous Pi-Calculus. In Proceedings
of the 21st Annual IEEE Symposium on Logic in Computer Science, pages 59–
68. IEEE Computer Society Washington, DC, USA, 2006.

[PvdA06] M. Pesic and W.M.P. van der Aalst. A Declarative Approach for Flexible
Business Processes Management. Lecture Notes in Computer Science, 4103:169,
2006.

[PW05] F. Puhlmann and M. Weske. Using the Pi-Calculus for Formalizing Workflow
Patterns. BPM, 3649:153–168, 2005.

[Sar93] V. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[SJG94] Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta. Foundations of
timed concurrent constraint programming. In Proceedings of the Ninth Annual
IEEE Symposium on Logic in Computer Science (LICS 1994), pages 71–80.
IEEE Computer Society Press, July 1994.

[STG+10] Jørgen Staunstrup, Frank Tung, Arne Glenstrup, Thomas Hildebrandt,
Li Weiping, Lin Huiping, Yu Lian, and Søren Debois. The jingling - ge-
nies project. http://sites.google.com/site/jinglinggenie/Home, Jan-
uary 2010.

[SW01] Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile Pro-
cesses. Cambridge University Press, New York, NY, USA, 2001.

[Tha01] S. Thatte. XLANG: web services for business process design, 2001. Microsoft
http: // www. gotdotnet. com/ team/ xml-wspecs/ xlang-cl/ default.

htm , 2001.

59

http://sites.google.com/site/jinglinggenie/Home
http://www.gotdotnet.com/team/xml-wspecs/xlang-cl/default.htm
http://www.gotdotnet.com/team/xml-wspecs/xlang-cl/default.htm

[VCS08] H.T. Vieira, L. Caires, and J.C. Seco. The Conversation Calculus: A Model
of Service-Oriented Computation. In Programming languages and systems:
17th European Symposium on Programming, ESOP 2008, held as part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008: proceedings, page 269. Springer-
Verlag New York Inc, 2008.

[vdA98] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[vdAP06] W.M.P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative
Service Flow Language. Lecture Notes in Computer Science, 4184:1, 2006.

[VP98] Björn Victor and Joachim Parrow. Concurrent constraints in the fusion cal-
culus. In Proc. of ICALP, volume 1443 of LNCS, pages 455–469. Springer,
1998.

60

	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions
	Document Structure

	Preliminaries
	A Process Calculus for Mobile Systems
	Meaning of Processes

	Concurrent Constraint Programming

	Types for Secure Pattern Matching with Local Knowledge in Universal CCP
	Introduction
	utcc and Secure Pattern Matching
	Motivating a refined universal abstraction in utcc
	Types for secure abstraction patterns in utcc

	Applications
	Protocols

	Conclusions and Future Work

	Towards a Unified Framework for Declarative Structured Communications
	Introduction
	Preliminaries
	A Language for Structured Communication
	utcc's Derived Constructs.

	A Declarative Interpretation for Structured Communications
	A Timed Extension of HVK
	Case Study: Electronic booking
	Exploiting the Logic Correspondence

	Concluding Remarks

	A Logic for Choreography
	Introduction
	The Global Calculus
	Syntax.
	Semantics.
	Type discipline for the Global Calculus

	A Logic for the Global Calculus
	Syntax of the Logic.
	Semantics of the Logic.

	Proof System
	Future work

	Concluding Remarks
	Future Directions

	Bibliography

