
Foundations of Communication-Centred
Programming

Calculi, Logics & Types

Hugo-Andrés López-Acosta

Ph.D. Dissertation

IT University of Copenhagen January 2012

Foundations of Communication-Centred
Programming

Calculi, Logics & Types

Hugo-Andrés López-Acosta

A PhD Dissertation
Presented to the Faculty of the IT University of Copenhagen
in Partial Fulfillment of the Requirements of the PhD Degree

Advisor : Thomas T. Hildebrandt - IT University of Copenhagen
Examinators : Carsten Schürmann - IT University of Copenhagen

Hans Hüttel - Ålborg University
Nobuko Yoshida - Imperial College London

IT University of Copenhagen January 2012

Foundations of Communication-Centred Programming
Abstract: Service and process-oriented systems are relatively new technologies
that promise effective business processes and flexible and adaptable enterprise IT
systems. The key factor in service systems is the ability to decompose a business
process into a distributed system, where each participant implements parts of the
functions in a business process, and interactions between participants are performed
via message passing. In recent years, service- and process-oriented applications
have rapidly become the norm for distributed enterprises and they have led to a
number of new programming languages and standards, collectively referred to as
communication-centred programming. Despite their adoption, these languages and
standards for communication-centred programming are still young and unstable, and
not grounded on a solid theoretical foundation.

There are at least two significant dimensions when describing communication-
centred programs: First, the global/local views used to describe interactions, and
second, the imperative/declarative specifications styles used. With respect to views:
a global view considers the system as a whole, describing specifications as sequences
of message exchanges among participants, and a local view describes the system as
a concurrent composition of processes, implementing each participant in the system.
While the global view is what is usually provided as specification, the local view is
a necessary step towards a distributed implementation. On specification styles: If
processes are defined imperatively, then the control flow is defined explicitly (e.g.:
as a flow graph of interactions/commands). In a declarative approach processes are
described as a collection of conditions (e.g.: logical formulae) they should fulfil in
order to be considered correct. Until now, research in these two dimensions have
evolved rather independently from each other.

This dissertation collects works devoted to foundational studies in communication-
centred programming. Specifically, the dissertation revolves around process calculi
as the main analytical tool for service-oriented systems. Process calculi are formal
languages conceived for the description and analysis of concurrent systems, provid-
ing a rigorous framework where distributed systems can be accurately analysed, by
means of reasoning techniques to verify essential properties of a system. By means
of process calculi, we provide formal relations between global and local views, and
declarative/imperative specifications. This is achieved by extending previous works
on the area with additional information in model specifications, like timing constraints
and compensable behaviour. Finally, we provide process specifications with reason-
ing techniques (specification logics, type systems, simulation techniques) that allow
one to verify the behaviour of a service specification with respect to trustworthy
properties in the system.

Keywords: Process Calculi, Service-Oriented models, specification logics, type
systems.

Acknowledgments

This thesis is seldom the result of the work of a single person. Since I started learning
about Concurrency Theory back in 2004, many people have contributed, inspired and
supported my work. The document you are holding now summarises some of the
results achieved in these years, and it they would have clearly not existed if it was
not because of the influence of wonderful people surrounding me.

I am extremely grateful to Thomas Hildebrandt and Marco Carbone for their
patience and support during my studies in the IT University. Thomas gave me sound
advice and had enough patience to let me work in my own research ideas, no matter
how disparate they were. This freedom allowed me to start paths far from what it
was originally the ideas basing my Ph.D., which later evolved in some of the articles
here presented. I am most grateful to him for such liberty.

I met Marco Carbone back in 2004 in Paris at the LIX Colloquium of Concurrency
theory, and I would have never imagined how influential would he be in the selection
of my research path. His forbearing, visions and support were definitive for finishing
this thesis. Even though he was not my direct supervisor, Marco and I spent long
hours having scientific (and other) discussions, and his way of approaching research
is definitely one of the biggest assets I take from my stay at ITU. Above all, I thank
Marco, and his family, for their invaluable friendship.

Special thanks go for Jorge A. Pérez. He has been my colleague and a sup-
porting friend since I started doing research back in Colombia, and we have shared
uncountable discussions on Concurrency Theory and life at a large. Jorge appears
as coauthor in only two papers in this dissertation. His contribution was, however,
greater than what that you have might perceived. Research with Jorge is exciting,
as he can see both the “big picture” and work methodically on the details, a quality
that few have.

My approach towards research is directly linked with friendship, and I have pro-
found admiration for my coauthors along this time. They are all extremely talented
people, and I have learnt a great deal from the interaction with each of them. Thanks
to Davide Grohmann, Carlos Olarte, Gian D. Perrone, Andzrej Wasowski, Nicola Zan-
none, Fabio Massacci, Jorge A. Pérez, Marco Carbone and Thomas Hildebrandt.

As part of my Ph.D. I made a short visit to the Laboratoire d’Informatique de
l’École Polythecnique-Paris, and a longer visit to the Department of Informatics of
the University of Lisbon. I wish to thank both teams and my hosts (Frank Valencia
and Vasco Vasconcelos) for providing exciting research environments and construc-
tive criticisms that nourished this research. LIX is clearly an inspiring place to do
research, and my discussions with Frank, Carlos Olarte and Catuscia Palamidessi
gave me a better understanding on Concurrent Constraint Programming languages.
The group at the University of Lisbon, with Vasco, Dimitris Mostrous and Kohei Sue-
naga, is expert in type theories, and our many discussions inspired me in a great
extent to explore the connections between logics and types. I owe special gratitude

iv

to Vasco, who had always time for doing research with me despite how busy he could
be.

My time as a Ph.D. student ends in Denmark, but it started in Italy back in 2006.
From my time in the University of Trento I wish to thank Fabio Massacci, and Paola
Quaglia. Fabio inspired my research in business processes and service-oriented
technologies, which I had no idea would be so exciting. To Paola goes my deepest
gratitude, for being an inspiring figure, a talented scientist and a supporting friend,
who helped me with her advice on making the right decisions in the proper time.

I would like to express my appreciation to the excellent research environment at
the IT University of Copenhagen, specially in the Programming, Logics and Semantics
group. People in PLS helped me all along my period as a Ph.D. student, sharing their
views about research, reading and correcting my manuscripts, giving me constructive
critics, inspiring my work or even distressing the environment with a soccer match or
a glass in the friday bar. Special thanks go to Espen Højsgaard, Troels Damgaard,
Ebbe Elsborg, Fabrizio Montesi, Davide Grohmann, Gian D. Perrone, Søren Debois,
Claus Brabrand, Jacob Thamsborg, Adam Poswolsky and Jeffrey Sarnat.

Many people expressed interest in the research I performed, and I am most grate-
ful for their comments on each of the papers. I wish to express my special gratitude
towards Kohei Honda, Nobuko Yoshida and Martin Berger, that read, commented or
discussed with me different aspects of the work here presented.

I owe much to Camilo Rueda and Frank Valencia for inspiring me on doing
research in the academia. They are both extremely humble people despite their
outstanding research, and they both provide me advice on my career path, way be-
fore I decided to explore the field of concurrency theory. Frank played an important
part in my life, and his interests in finding relations between logics and concurrent
programs also shaped the motivations of this thesis. It is fair to say, that without
them, this thesis would have not existed.

I am very proud of being part of a generation of people showing that research in
(theoretical–but not only) computer science in Colombia not only is possible, but can
provide fruitful results. Despite our different interests, this small group of colombians
is working hard towards the construction of a better country by doing top research in
their own specialities. Many thanks to Julian Gutierrez, Jorge A. Pérez, Alberto Del-
gado, Alejandro Arbelaez, Andrés A. Aristizábal, Joel Grandees and Juan D. Hincapié
for making such effort.

Doing research in academia is in general not an easy task, not only because it
is a complex and highly-competitive environment, but also because it also involves
living abroad and get detached from your roots. My friends have helped me to en-
dure such situations and allowed me continue along, even in moments I felt I would
not have managed. They did not need to know anything about my research, but
supported me as a human being, which is a great quality. My gratitude goes for the
Segata-Gasperetti family, Gabriele Sarli and Francesco Nesta in Italy, Haideer Mi-
randa in Costa Rica, Rodolfo Cartas in Mexico, Alejandro Fuentes across the Øresund
bridge, Natalia Kuraszynska, Jon Springborg, Mikkel Hall in Denmark, and Franklin
J. Valverde, Juan M. Casas, Mónica Larrahondo and Emma Sánchez in Colombia.

v

Also in this “human department”, I want to thank all those tango, salsa and kizomba
dancers in my life. It will be very honest to say, that dancing kept my sanity along
these years, by connecting me back with the human factor that academia sometimes
forgets.

Last, but by not means least –quite the contrary, actually– I want to dedicate this
thesis to my loving family, who provide me unconditional support, trust and peace
of mind in the moments I needed the most. To my father Victor Hugo, my mother
Amparo and my sister Verónica Isabel, this is for, and because of you.

Hugo-Andrés López
Copenhagen, 31�� January 2012.

Contents

Abstract i

Acknowledgments iii

Contents vii

List of Figures xi

1 Introduction 1
1.1 Motivation . 1

1.1.1 Communication-Centred Programming 2
1.2 Specifying Communication-Centred Programming. 4

1.2.1 Global vs. Local Views . 5
1.2.2 Imperative vs. Declarative Specifications 5

1.3 Overview of this Dissertation . 6
1.3.1 Process Calculi . 7
1.3.2 Approach . 8
1.3.3 Contributions . 11

1.4 Related Work . 13
1.4.1 Process Calculi . 13
1.4.2 Declarative Specifications . 16
1.4.3 Petri Nets . 16
1.4.4 Type Systems . 17
1.4.5 Behavioural Contracts . 20
1.4.6 Modelling Standards . 20

1.5 Organisation and Structure . 21
1.5.1 Publication list . 23
1.5.2 Document Structure . 24

2 Technical Background 27
2.1 Process Calculi . 27

2.1.1 A Process Calculus for Mobile Systems 27
2.1.2 (Temporal) Concurrent Constraint Programming 32
2.1.3 Languages for Structured Communications 36
2.1.4 The Conversation Calculus . 42

2.2 Verification . 44
2.2.1 Linear Temporal Logic . 44
2.2.2 Session Types for the Global Calculus 45
2.2.3 Session Types for the End-Point Calculus 47
2.2.4 End Point Projection . 49

viii Contents

2.3 Behavioural Equivalences between Processes 52
2.3.1 Simulations & Bisimulations . 52
2.3.2 Testing Theories . 53

3 A Unified Framework for Declarative Structured Communications 55
3.1 Introduction . 56

3.1.1 Motivation. 56
3.1.2 This Work. 57
3.1.3 A Compelling Example. 57
3.1.4 Related Work. 59

3.2 Preliminaries . 59
3.2.1 A Language for Structured Communication 59
3.2.2 Timed Concurrent Constraint Programming 61

3.3 A Declarative Interpretation for Structured Communications 66
3.3.1 Operational Correspondence. 67

3.4 A Timed Extension of HVK . 72
3.4.1 Case Study: Electronic booking 73
3.4.2 Exploiting the Logic Correspondence 75

3.5 Concluding Remarks . 76

4 Types for Security and Mobility in Universal CCP 79
4.1 Introduction . 80
4.2 Preliminaries . 81
4.3 utcc and Secure Pattern Matching . 84

4.3.1 Motivating a refined universal abstraction in utcc 84
4.3.2 Types for secure abstraction patterns in utcc 85

4.4 Applications . 92
4.4.1 Mobility & Access Control . 92
4.4.2 Security Protocols . 93

4.5 Discussion and Future Work . 97
4.5.1 Further comments on Secrecy . 98
4.5.2 Future Work . 99

5 Modal Logics for Structured Communications 101
5.1 Introduction . 102

5.1.1 An Example . 103
5.2 The Global Calculus . 106

5.2.1 Syntax . 107
5.2.2 Semantics . 108
5.2.3 Session Types for the Global Calculus 111

5.3 �� : A Logic for the Global Calculus . 113
5.3.1 Syntax . 113
5.3.2 Semantics . 116

5.4 Undecidability of Global Logic . 117

Contents ix

5.5 Proof System for �� . 119
5.6 End-Point Calculus . 124

5.6.1 Syntax . 124
5.6.2 Semantics . 125
5.6.3 Session Types for the End-Point Calculus 128
5.6.4 End Point Projection . 130

5.7 ��: A logic for End Points . 133
5.7.1 Examples of formulae in �� . 134
5.7.2 Semantics of �� . 134
5.7.3 Translation from �� to �� . 136
5.7.4 ��: Proof System . 139

5.8 Conclusion and Related Work . 142
Appendix 5.A Global Calculus: Reduction Semantics 144
Appendix 5.B Global Calculus: Typing Rules 144
Appendix 5.C End-Point Calculus: Reduction Semantics 144
Appendix 5.D End-Point Calculus: Typing rules 145
Appendix 5.E End Point Projection: Merging 147
Appendix 5.F End Point Projection: Thread Projection 148

6 Time and Exceptional Behaviour in Multiparty Structured Interactions 151
6.1 Introduction . 152
6.2 The Conversation Calculus . 156
6.3 C3: CC + Time + Compensations . 159
6.4 Expressiveness . 161
6.5 A Healthcare Compelling Example . 163

6.5.1 The Medicine Delivery Scenario. 164
6.6 Timed and Compensating Models. 165

6.6.1 Exceptional Behavior. 166
6.6.2 A timed model. 167
6.6.3 Putting all together. 168
6.6.4 The Semantics At Work. 168
6.6.5 Refining the Initial Model. 170

6.7 Related Work . 172
6.8 Concluding Remarks . 173
Appendix 6.A Further Examples: Running the Buyer-Seller example 174
Appendix 6.B Proofs of Proposition 6.6.4 . 176

7 Towards Refinement Relations in Open Specifications 179
7.1 Refinement for Open Mixed Trees . 180

7.1.1 Open Mixed Trees and Refinement 182
7.2 Refinement for Transition Systems with Responses 184

7.2.1 Transition Systems with Responses and Refinement 185
7.3 Discussion and Future Work . 186

x Contents

8 Final words 189
8.1 Conclusions . 189
8.2 Current and Future work . 190

Bibliography 195

List of Figures

1.1 Example of a Business Process: an on-line booking scenario 3
1.2 Visions of Communication-Centred Programming 9
1.3 Overview of the contributions . 13
1.4 The structure of this thesis . 25

2.1 Operational semantics of the (late) π-calculus 30
2.2 Transition System for utcc: Internal and Observable transitions 34
2.3 Reduction Semantics of HVK . 37
2.4 Reduction Semantics for the Global Calculus 40
2.5 Reduction Relation for the End-Point Calculus 42
2.6 CC: Operational Semantics . 44
2.7 FLTL semantics . 46

3.1 Reduction Semantics of HVK . 61
3.2 Transition System for utcc: Internal and Observable transitions 64
3.3 Encoding HVK → utcc . 68
3.4 HVKT: Syntax of the language . 72
3.5 Encoding of HVKT . 73
3.6 Online booking example with two agents. 74
3.7 Online booking example with online broker. 75

4.1 Transition System for utcc: Internal and Observable transitions 83
4.2 Typing rules for secure patterns and processes 87
4.3 SPCCP : Process syntax . 94
4.4 Entailment relation for a security constraint system. 95
4.5 Needham-Schröeder-Lowe protocol with public-key encryption 96
4.6 NSL protocol in SPCCP . 96
4.7 NSL protocol: Translation into utcc� . 97

5.1 Electronic booking example . 104
5.2 Operational Semantics for the Global Calculus 109
5.3 �� : Syntax of formulae . 113
5.4 Diagram of a partial specification. 115
5.5 Assertions of the Choreography Logic . 117
5.6 End Point Calculus: LTS semantics for Processes 125
5.7 End Point Calculus: LTS semantics for Networks 126
5.8 Syntax of �� . 133
5.9 Assertions of the Local logic . 135
5.10 Proof system for the End Point Calculus. 140
5.11 Reduction Semantics for the Global Calculus 144

xii List of Figures

5.12 Global Calculus: Typing Rules . 145
5.13 Reduction Relation for the End-Point Calculus 146
5.14 End Point Calculus: Typing rules . 147
5.15 End-Point Projection: Merging Rules . 148

6.1 The purchasing scenario in CC. 153
6.2 The purchasing scenario in C3. 155
6.3 CC: Operational Semantics . 158
6.4 Rules for the LTS of C3. 160
6.5 LTS rules for an extension of the CC with try-catch 162
6.6 BPMN diagram for the medicine delivery scenario. 164
6.7 Medicine Delivery Scenario: Basic Model in CC 165
6.8 Medicine Delivery Scenario: Exception-only model in C3−� 166
6.9 Medicine Delivery Scenario: Model in C3−� 167
6.10 The medicine delivery scenario in C3 . 169
6.11 Relations between T and SF . 177
6.12 Relations between T and ST . 178

7.1 Medication workflow as two interacting transition systems with re-
sponses . 185

Chapter 1

Introduction

What is the relationship between the ways a physician, a chemist, or a salesman
organise their daily work practices? Their days are organised in terms of task and
activities, normally involving some sort of collaboration with computational systems
and other colleagues inside or outside the organisation, such as, generating quotes of
a given product to a possible customer, performing a biological experiment and inte-
grating the results with the database, or prescribing medicine according to patients’
tests. Ultimately, these interactions must necessarily be structured in a meaningful
way. This thesis studies the ways in which computational interactions underly-
ing most of our daily work activities are structured. In particular, we concentrate
on Communication-Centred Programming, or the programming language techniques
used to describe such interactions. We provide contributions on process calculi for
Communication-Centred Programming, and reasoning techniques to ensure prop-
erties of the reliable performance of distributed systems. The hypothesis is that
specifications of Communication-Centred programs currently have different, interre-
lated visions, both in the level of abstraction used to define interactions as well as
the programming language paradigms used when defining them. We believe it is of
utmost importance to define exactly how these visions are interrelated.

1.1 Motivation

More than forty years separate us from the beginnings of the Internet, a medium that
changed drastically the way we communicate, interact, and collaborate across the
globe. From mechanisms to support democratic elections up to meshes of networks
collaborating in the execution of biological experiments, it has reshaped the way we
perceive the world. The impact has been so deep that in June 2011 the United Nations
declared Internet access as an inalienable fundamental right to which a person is
inherently entitled simply because she or he is a human being [La Rue 2011].

Such advances do not come alone, and considerations regarding how to provide
dependable infrastructures must be examined when defining ways of interacting over
the Internet. From the security of personal data to guarantees regarding the correct
execution of a distributed transaction, the “future Internet" poses questions in terms of
scalability, mobility, flexibility, security, trust, and robustness to the more than forty
year old current Internet architecture. As outlined in [European Commission 2007],
a vast landscape of application and ever-changing requirements and environments
must be supported, and new means of interaction must be devised, coping with safety
and reliability in their coordination methods.

2 Chapter 1. Introduction

1.1.1 Communication-Centred Programming

Given the loosely-coupled, highly distributed nature of systems over the Internet, this
thesis revolves around the central theme of Communication-Centred Programming
[Carbone et al. 2007]. In Communication-Centred programming, the focus lies in
designing the communication protocols of distributed systems in such a way that,
when deployed together, they will behave according to a specific control flow.

In this way, Communication-centred programming captures related concepts like
(i) Business Processes, (ii) Workflow models, and (iii) Service Oriented Computing:

Business processes: Business processes describe a series of structured and au-
tomated interactions among business entities. It is predominantly inter-domain,
regulation-based, and demands that involved stakeholders have a clear shared un-
derstanding of its meaning. Because of its inherent inter-organisational nature, a
business process typically describes interactions at a global level, where different
stakeholders may be involved.

Workflow models: The development of organisational-level business processes led
to workflow management technologies. The important achievement of workflows is
the explicit representation of process structures in process models and the controlled
enactment of business processes according to these models. Workflow technologies
provide a framework for the specification and automation of processes by means
of activities respecting a business logic. Compared to business processes, process
descriptions in the workflow are more concrete, and one can see workflows as au-
tomation of business processes in which tasks and information are contingent upon
other for action, according to a set of procedural rules.

Service-Oriented Computing: Finally, Service-Oriented Computing (SOC) opens a
new, different horizon by distributing the places in which the business logic is defined;
now, small process units (services) can be shared between different organisations, so
each of them can fulfil their business goals by reusing and outsourcing services.
Compared to business processes, services are specified at a local level, describing
only the viewpoint of one component in the system. Compared to workflows, services
are flexible entities where the component providing a service can be substituted in
a transparent way, without requiring any further adaptation.

An illustration of how these levels are related might help to understand their
importance. Let us consider an on-line booking scenario. On one side, consider an
on-line broker company which has deals with airlines, hotels and car rentals. On the
other side, there is a customer looking for the best offers for his upcoming holiday
trip. We can informally describe an excerpt of the sequence of allowed interactions
as follows:

1. Customer establishes a communication with the on-line broker;

1.1. Motivation 3

Cu
st

om
er

O
nl

in
e

Br
ok

er
Ai

rli
ne

 1
Ai

rli
ne

s

Starts
search

contact flight
providers

Ai
rli

ne
s

Ai
rli

ne
 1

Ai
rli

ne
s

Ho
te

ls
Ai

rli
ne

 1
Ai

rli
ne

s
Ca

r
 R

en
ta

ls

provide
offers

contact
hotels

contact car
rentals

provide
offers

provide
offers

get
offers

get
offers

get
offers

receive
offers

select offers
& pay

provide
plan

Figure 1.1: Example of a Business Process: an on-line booking scenario

2. Customer asks the broker for a holiday plan including flight tickets, and book-
ings for hotels and cars, given a set of constraints;

3. The on-line broker establishes a communication with his partners serving the
destination and respecting the constraints imposed by the customer;

4. After receiving offers, the on-line broker compiles plans and forwards the plans
to the customer;

5. Customer analyses the plans given, and selects the best offer.

A business process describing the given scenario will pay attention to the set
of roles involved, and the sequence of interactions between such roles. Figure 1.1
describes the participants, activities, and control/message flows in this scenario1.
Here, the description is rather abstract, and details about the communication prim-
itives used and synchronisation methods are not specified. A business process then
expresses the “global view”, providing a specification of the whole system.

A workflow model will refine the specification of the business process, including
the way in which each activity is described, adding more detail to the activities and
communication flows. A workflow model is intended to be executable, and therefore
its descriptions must be precise enough to be followed. Returning to the example,

1We use the Business Process Modelling Notation (BPMN) [Object Management Group 2011] just
as an illustrative tool to outline the model in this process.

4 Chapter 1. Introduction

the workflow will specify precisely which communication protocols must be followed
for each communication between the on-line broker and its associated airlines. The
workflow hard-wires each activity, and if one needs to change the technologies sup-
porting any of the activities, then it will be necessary to adapt the workflow accord-
ingly.

In the last level, services provide a flexible, scalable, and technology-agnostic
infrastructure. Every task of the business process is encapsulated by a service, de-
ployed at the site of one of the participants. The “local view” refers to this deployment:
located services posses only information about their local state, and connections to
other services they can use. Each service is published in a service repository, that
allows later linkage with other services, provided that they have compatible inter-
faces. Compared to workflow technologies, the use of service repositories adds a
degree of flexibility: while in the workflow changes in technologies require adaptors
that connect old and new components, services act transparently, that is, they do not
require previous knowledge about the underlying technologies used to implement
the service in order to use it (that is, as long as they conform to the same interface).

1.2 Specifying Communication-Centred Programming.

Giving the inherent complexity of analysing services in distributed environments, one
normally uses different abstractions to describe and reason about them. One such
abstraction deals with the the study of the concurrent nature of services. Process
calculi are formal languages for the description and analysis of concurrent systems.
As such, the goal of a process calculus is to provide a rigorous framework in which
complex systems can be accurately analysed, including reasoning techniques (type
systems, specification logics, behavioural relations) to verify essential properties of
a system. The work of [Honda et al. 1998] provided a new view of Communication-
Centred programming in light of a process algebraic approach. The term structured
communications refers to the branch of process calculi devoted to the analysis of
interactions between services. In a calculus for structured communications, one con-
siders the computation within a service as an atomic activity, and focuses the core of
the analysis on the interactions between services.

One of the most important aspects when modelling services relates to the notion
of trustworthiness, or the extent to which users believe that the systems behave
correctly. A safe system is one in which a property considered harmful for the
proper functioning of the system will never happen, e.g., the disclosure of the private
credentials of the manager to a thief.

Despite of being such a recent trend, different but related views for the analysis of
service oriented systems have been proposed. We can characterise such approaches
in two dimensions: global/local views of services, and imperative/declarative specifi-
cations.

1.2. Specifying Communication-Centred Programming. 5

1.2.1 Global vs. Local Views

The first dimension relates to the granularity of abstraction used to describe in-
teractions; either one describes the system as the exchange of messages between
different participants, or one considers the system as the composition of the local
behaviours of each participant. In this first view, known as choreography [Kavantzas
et al. 2004], one considers the system as a whole, taking care only of the inter-
faces that participants use when interacting with the outside world. Choreographies
help to describe the scenario in which all actors are involved in the communication
process, defining where and when a communication has to happen. A designer of
orchestrations decides that e.g., there will be a message from the Customer to the
On-line Broker without further considerations on how this will be implemented by
the Customer (sending a message) or at the On-line Broker (expecting to receive a
message). This level of abstraction has already proved useful from a software de-
velopment perspective, and approaches coming from both the theoretical side [Brogi
et al. 2004, Montangero & Semini 2006, Su et al. 2007, Carbone et al. 2009, Carbone
et al. 2010] and the development of industrial standards [Kavantzas et al. 2004, Object
Management Group 2011] for choreographies have been studied.

The second view, known as orchestration [Misra & Cook 2006], instantiates the
global view described by a choreography to a distributed view where participants
(also called end-points) implement the communication strategies dictated by the
choreography. One can see the vision of an orchestration as one in which the system
is perceived by the eyes of each participant, sending and receiving messages but not
knowing which other actors are present during a communication. Both choreogra-
phies and orchestrations assume autonomous scenarios, that is, they do not require
a single point of control. This assumption, although realistic, greatly complicates
the correct mapping from choreographies to orchestrations. Flavours of orchestration
models abound [Lapadula et al. 2007a, Lanese et al. 2007, Hongli et al. 2007, van
Riemsdijk & Wirsing 2007, Bruni & Mezzina 2008, Vieira 2010], and we will dis-
cuss them in the next section. As previously stated [Carbone et al. 2007, Lanese
et al. 2008, Hongli et al. 2007], choreographies and orchestrations can be opera-
tionally correspondent, and one can project a choreography to generate distributed
orchestrations that implement it.

1.2.2 Imperative vs. Declarative Specifications

The second dimension refers to the approach used to construct the models. Descrip-
tions can have imperative or declarative flavours: In an imperative approach, one
explicitly defines the control and communication flow of activities. These kinds of
specifications are the most commonly used nowadays, and typical representatives of
this approach are based on Petri nets and process calculi, as well as diverse industry
standards. An imperative specification describes “how the process should behave”,
defining the set of control structures, synchronisation methods, and activities involved
in a specification. Imperative models require a total knowledge of the system being

6 Chapter 1. Introduction

specified, and the flexibility of imperative specifications is highly dependent on the
constructs included in the modelling language used. Finally, changes to models de-
rived from imperative specifications might be costly, as one needs to re-engineer the
model from scratch.

By contrast, in a declarative approach the focus shifts to the specification of the
set of constraints (causality relations, time constraints, quality of service) processes
should fulfil in order to be considered correct [Nørgaard et al. 2005, Pesic & van der
Aalst 2006, van der Aalst & Pesic 2006, Lyng et al. 2008, Rychkova et al. 2008]. The
idea in a declarative approach lies in defining “what are the requirements?” instead
of “how should we model them?”. The idea of declarative specifications emerged
from a generation with a need for flexible and rapidly-evolvable processes [Heinl
et al. 1999], and require only a partial knowledge of the system specified. When
working in a declarative language, the users are driven by the system to produce
the required results, while the manner in which the results are produced depends
on the preference of the users. Adapting the system to new requirements requires
significantly less work than in imperative specifications: The constraints representing
the new requirements are added to the original specification, and the system will be
valid as long as the added constraints do not create inconsistencies with the original
specification. Declarative specifications can also be seen as the definition of policies
about the behaviour of the system, and they normally have a logical foundation, for
instance, a formula in Linear Temporal Logic [Manna & Pnueli 1992].

Even if these two trends address similar concerns, we find it interesting that
both styles have evolved independently of one another. Imperative and declarative
specifications need not be mutually exclusive. For instance, consider the healthcare
domain: a hospital specifies all possible treatments for different illnesses in special
kinds of workflows, also called clinical protocols. Clinical protocols are quite specific
regarding the actions taken by each of the actors involved in patient treatment,
also describing the sequences in which each of the members involved in the patient
treatment will engage in the protocol. On the other hand, clinical guidelines are the
de-facto assessment tool regarding the compliance of a hospital with good practices
in the medical sector. Clinical guidelines are, as defined by the American Institute
of Medicine, “systematically developed statements to assist practitioner and patient
decisions about appropriate health care for specific clinical circumstances”[Field &
Kathleen N. Lohr 1990]. As a clinical protocol depends greatly on the infrastructure
and personnel a health care institution has, clinical guidelines define only sets of
actions that should be performed. We can observe here, that clinical protocols are
imperative specifications, while clinical guidelines are their declarative counterparts.

1.3 This Dissertation

This thesis focuses on the development of foundations in which connections between
the four different dimensions describing Communication-Centred Programming can
be formalised. In the following we will discuss how this can be done. Our approach

1.3. Overview of this Dissertation 7

relies on concurrency theory, in particular we specialise in process calculi.

1.3.1 Process Calculi

Process calculi (also known as process algebras) are formalisms devised for the
description and analysis of the behaviour of concurrent systems. As such, the goal
of a process calculus is to provide a rigorous framework where complex systems
can be accurately analysed, including reasoning techniques to verify their essential
properties. We first discuss some basic principles of process calculi, including several
issues that distinguish them from other formal models for concurrency and the main
approaches to give meanings to processes.

The nature and features of concurrent systems occurring in the real world makes
difficult the task of finding a canonical formalism in which every system can be accu-
rately represented. In fact, even in the context of the restricted field of Communication-
centred Programming, a wide variety of different phenomena, occurring at different
levels of abstraction, can be recognised. The goal then is to identify a common set of
underlying principles in the systems of interest, and to define suitable operators that
capture them in a precise way. In other words, a process of abstraction is required
to define meaningful calculi in the simplest possible way.

Process calculi are then abstract modelling languages for concurrent systems.
This implies that models of systems abstract from real but unimportant details that do
not contribute to essential system interactions. Abstraction not only allows designers
to better understand the core of a system, but it also turns out to be necessary for
an effective use of reasoning techniques associated with the calculus.

In addition, process calculi follow a compositional approach for systems descrip-
tion. This implies that a process calculus model of a system is given in terms of
models representing its subsystems. This favours an appropriate abstraction of the
main components of the systems and, more importantly, allows one to explicitly rea-
son about the interactions among the identified subsystems. As we will see later,
each calculus assumes a particular abstraction criteria over systems, which will in-
fluence the level of compositionality that models exhibit.

Whilst industrial modelling languages provide a broad set of language constructs,
process calculi pay special attention to economy. There are few process construc-
tors, each with a distinct and fundamental rôle in capturing the behaviour of systems.
A reduced number of constructors in the language helps to ensure that the theory
underlying the calculus is tractable, and encourages a precise definition of the ab-
straction criteria that the calculus aims to express. Interestingly, research shows
that when it comes to standards for Communication-centred Programming, a broader
corpus of the modelling language can be encoded into core subsets [Højsgaard &
Hallwyl 2012], and that current usage of industrial modelling standards tends to
restrict the language constructs used to a small but expressive subset [Muehlen &
Recker 2008], akin to the motivation behind having fewer constructs in process calculi.

Besides giving a solid framework for the description of process behaviours, one
of the main advantages of process calculi lie in the provision of reasoning methods

8 Chapter 1. Introduction

where concurrent models can be studied. In this thesis we concentrate our studies
in three reasoning techniques: behavioural relations, specification logics, and type
systems.

Behavioural Relations: Generally speaking, behavioural relations formalise the set
of criteria that must be respected when comparing two concurrent systems. When
comparing a specification and different possible implementations of a system, for in-
stance, we will require that the implementations considered have at least the same
behaviour as that of the specification. At the same time, when comparing implementa-
tions, we would like them to have an equivalent set of behaviours. Relations between
models at different levels of abstraction are normally captured by pre-orders, while
equivalences capture the relations between models at the same level. The granular-
ity used to define the criteria in a behavioural relation will determine how strong
the relation is, and a number of different equivalences and pre-orders have been
proposed based on which aspects of system behaviour should be observable.

Specification Logics: When describing the correctness of a system with respect to
a specification using behavioural equivalences such as observational equivalences,
we are in many cases forced to specify the overall behaviour of the system. A
specification logic allows for verification of properties regarding partial specifications
of the system. Most of the interesting properties in concurrent systems fall into
two categories: safety properties (“something bad never happens in the system”),
and liveness properties (“something good eventually happens”) [Lamport 1994]. The
verification of these kind of properties in a process specification is carried out by
exploring the state space of the system, rather than by equivalence checking. A
logical semantics gives the meaning of process interactions in terms of a language
with well-defined and intuitively understandable semantics. Usually, this is done
by providing an interpretation of the process constructors in terms of a logic, such
as Modal Logics and Temporal Logics. A specification logic then allows a user to
verify properties via exploration of the state space of the process in question (Model
checking).

Type Systems: Another way of specifying and analysing the behaviour of a process
specification is by means of type systems. A type system is a syntactic method that
restricts the behaviour of specifications such that they fulfil a certain set of proper-
ties. In Communication-centred Programming, for instance, we use type systems to
guarantee that processes will adhere to a certain protocol communication strategy.
Another example is security protocols, where we can use type systems to limit the
power of a language so it does not allow attackers to infer private information.

1.3.2 Approach

This research has as a main objective to build formal connections between the dif-
ferent dimensions (global vs. local and imperative vs. declarative) in specification

1.3. Overview of this Dissertation 9

Operational/Global
Specifications

Operational/Local
Implementations

Logical/Local
Implementations

Logical/Global
Specifications

Communication
Centred

Programming

Sy
st

em
's

vie
wp

oi
nt

Local

Global

Specification style

Operational Declarative

Figure 1.2: Visions of Communication-Centred Programming

and verification of Communication-centred Programs. Rather than proposing a novel
modelling language featuring imperative/declarative visions, this thesis explores the
connections between well-established approaches for the study of interactions in
message-passing concurrency. We believe it is in this way that we can achieve a
faster adoption in the techniques and methods presented here: A business process
described in an existing modelling language such as the Web Services Choreogra-
phy Description Language (WS-CDL) [Kavantzas et al. 2004] can be directly checked
against its declarative counterpart without requiring the model to be transformed.
Our goal is to present characterisations of processes, both at the operational and
logical level. This is done by relating the way processes are specified, both from
their global and local viewpoints. Figure 1.2 illustrates the approach for the spec-
ification and verification of Communication-centred programs. A specification of a
process in its global view (choreography) can be projected to the distributed execu-
tion of its end points. Similarly, every global specification corresponds to a formula
in a modal logic representing the interactions between agents. A modal logic for
global specifications not only provides the logical characterisation of a process; it
also allows for partial specification: Given a logical formula, one can see if there is
a process in the global specification that can satisfy it.

A similar reasoning ability is provided for distributed implementations (end-
points): given a set of end-points defining how services interact, one is interested
in describing the behaviour of its composition. Moreover, a formula representing
the global behaviour of a choreography can be projected to a corresponding formula
describing the behaviour of a set of end-points.

In this thesis we mainly explore different process calculi for the analysis of
Communication-Centred Programs. Here we proceed to list some of the languages
which we build upon:

10 Chapter 1. Introduction

π-calculus for Session-Based communication:
In Communication-Centred Programming, a session is a logic unit of information
exchange between two or multiple communicating agents [Dezani-Ciancaglini
& De’Liguoro 2010]. Starting from Milner’s π-calculus [Milner et al. 1992], we
explore different variants of name-passing calculi with support for in-session
communication. The calculus presented in [Honda et al. 1998] is probably the
first attempt towards a rigorous approach in Communication-Centred Program-
ming. The calculus (here referred as HVK after the initials of their authors) is a
language for orchestrations that features primitive treatment for session-based
communication, including session establishment, data communication and ses-
sion delegation primitives, as well as a typing discipline that ensures that
communicating processes always follow safe communication patterns. In fur-
ther works, we use the duality between choreographies and orchestrations
presented in [Carbone et al. 2007]. There are two typed calculi for interactions:
a distilled version of the Web-Services Choreography Description Language
WS-CDL (here referred as the Global Calculus) and an applied π-calculus
with locations for end-points (so called the end-point calculus). The global
calculus directly describes interactions among multiple participants involving
sequencing, branching, and recursion, which differs from the end-point-based
descriptions given in the π-calculus, that describe orchestrations and the causal
relations between messages.

Conversation Calculus:
The Conversation Calculus (CC) [Vieira et al. 2008] corresponds to a π-calculus
with labelled communication and extended with conversation contexts. A con-
versation context can be seen as a medium in which interactions take place. It
is similar to π-calculus variants for session-based communication in the sense
that every conversation context has an unique identifier (e.g., a session). Inter-
actions in CC may be intuitively seen as communications in a pool of messages,
where the pool is divided in areas identified by conversation contexts. Multiple
participants can access many conversation contexts concurrently, provided they
can get hold of the name identifying the context. Moreover, conversations can
be nested multiple times (for instance, a private chat room within a multi-user
chat application).

Universal Temporal Concurrent Constraint Programming:
Concurrent Constraint Programming (CCP) [Saraswat 1993] is a formalism for
concurrency in which processes interact with one another by placing and read-
ing information represented as constraints in a shared medium. We explore the
use of a variant of CCP for Communication-Centred Programming. The Uni-
versal Temporal CCP (utcc) [Olarte & Valencia 2008a] is a variant of CCP for
reactive synchronous programming, with the ability to express link mobility. It
does so by including a universally quantified abstraction (���) operation over
the syntax of the timed version of CCP. This adds the ability to extend the scope

1.3. Overview of this Dissertation 11

of local knowledge which is not possible in CCP. utcc is a declarative model
for concurrency: it is shown that utcc processes can be seen, at the same time,
as computing agents and as logic formulae in Pnueli’s First-order Linear-time
Temporal Logic (FLTL).

1.3.3 Contributions

We can outline the contributions of this thesis in four main areas: process calculi
extensions, logical characterisation of message-passing concurrency, definition of
type systems, and definition of behavioural relations.

Process Calculi Extensions: In the search for adequate models for Communication-
centred programming, this thesis focuses on the use of derivatives of process
calculi with message-passing capabilities. Most of the calculi here studied
are derivatives of the π-calculus with support for session handling primitives,
including HVK [Honda et al. 1998], the End-Point Calculus (EPC) [Carbone
et al. 2007], and the Conversation Calculus [Vieira et al. 2008]. With respect
to these calculi, we propose extensions for the study of timed and exceptional
behaviour. In particular, we present HVKT [López et al. 2010], a timed exten-
sion of HVK that explicitly includes information on session duration, allows
for declarative preconditions within session establishment constructs, and fea-
tures a construct for session abortion. Additionally, we introduce C3 [López &
Pérez 2012], a variant of the Conversation Calculus in which conversation con-
texts are enriched with a time duration, a compensating activity, and designated
signals for conversation abortion.

In a parallel but interrelated branch, we studied how the concurrent constraint
family of languages could be suitable for models of Communication-Centred
Programming. The Universal (Temporal) Concurrent Constraint Programming
(utcc) [Olarte & Valencia 2008a] is a variant of CCP that introduces a universally
quantified ask operation that makes it possible to infer knowledge which is local
to other agents, modelling to a certain extend the mobility necessary in calculi
with support of sessions. Here we present secure utcc (utcc�), a variant of
utcc that allows the assumption of local knowledge in abstractions, limiting the
power of the abstraction operator so it can be used to encode mobility as in
the π-calculus.

Logical Characterisations: We strive for logical correspondences between the calculi
for Communication-Centred Programming and their logical meaning. To do
so, we explored the relation between Choreographies and Orchestrations and
Temporal/Modal logics. Starting with an extension of Hennessy-Milner Logic
[Hennessy & Milner 1980], we introduced �� [Carbone et al. 2010], a global logic
for the study of choreographies. The logic is equipped with a proof system that
allows for verification of properties among participants in a choreography. With
�� , one can see the state of a choreography as a formula in the logic, and one

12 Chapter 1. Introduction

can check for satisfaction of desirable properties by relating a logical formula
with respect to a choreographic specification. The correspondence between
Orchestrations and logics is given in two ways: first, the relationship between
the calculus of orchestrations in HVK and Linear Temporal Logic is provided in
form of an operational encoding to utcc. This way, services can be analysed in
a declarative framework where time is defined explicitly, and their behaviour
compared to formulae in LTL. Second, We define ��, a Henessy-Milner logic
variant describing the behaviours of end-point specifications. �� and ��
are closely tied, and one can project logical formulae describing properties for
choreographies in �� , to the realisation of end-point formulae in ��.

Type Systems: While trying to make the mapping between Concurrent Constraint
languages and name-passing calculi used in Communication-Centred program-
ming, we identified that concepts such as the communication of mobile data
and access control of information flow were not easily captured. The recently
proposed universal tcc (utcc) introduces a universally quantified ask operation
that makes it possible to infer knowledge which is local to other participants.
However, it allows participants to guess knowledge even if it is encrypted or
communicated on private channels, simply by quantifying over both the encryp-
tion key (or channel) and the message simultaneously. This complicates the
adoption of utcc as a model for mobility and secure communications. We intro-
duce a type system for constraints allowing to distinguish between restricted
(secure) and non-restricted (universally quantifiable) variables in constraints
[Hildebrandt & López 2009]. The adoption of such type systems allows for a
correct communication model including the transmission of local names (as in
the π-calculus) and applications in security protocols.

Behavioural Relations: A question derived from the definition of logical character-
isations relates to the comparison of models at different levels of abstraction
(choreographies & orchestrations) using behavioural relations. We search for
a refinement relation that can capture whether an implementation meets the
requirements imposed by a specification. Two types of refinements are studied
in this thesis: Firstly, we build upon definitions of testing theories [De Nicola
& Hennessy 1984] and simulation techniques in order to define a set of criteria
where models of session-based communication featuring timed and exceptional
behaviour could be compared [López & Pérez 2012]. Secondly, we search for
refinement relations that can capture the flexibility presented in our logical
specifications. Here we present initial ideas towards the refinement of Open
Specifications. An open specification has two components: a system descrip-
tion that presents the sequence of activities that must be performed, and “open”
activities: tasks that a system may do and still conform to the specification.
Here we present short notes on two initial, independent ideas towards the
definition of refinement relations for open specifications.

1.4. Related Work 13

(Abstract) Modelling
languages

Formal execution engines
(process calculi)

Session - based
calculi (π-calculus) CCP

ut
cc

s
ut

cc
G

lo
ba

l C
al

cu
lu

s
C

3

C
on

ve
rs

at
io

n
C

al
cu

lu
s

EP
C

H
VK

+
H

VK

Reasoning Methods

Specification
logics

Behavioural
relations

Type Systems{ choreographies

orchestrations

Refinement

Mobility &
Security

Figure 1.3: Overview of the contributions

Figure 1.3 illustrates the contributions of this thesis in terms of process-calculi
variants and its associated reasoning techniques.

1.4 Related Work

Vast is the literature referring to models and techniques for Communication-Centred
Programming, and they cover almost every aspect on the hierarchy of web-service
modelling: From foundational calculi for web-services, such as Misra and Cook’s Orc
[Misra & Cook 2006], we can follow several lines of research, each of them extending
basic ideas through the definition of languages equipped with service oriented prim-
itives, dealing with Quality of Service aspects or defining security mechanisms for
services, among others. In this section we aim to draw a picture describing recent
advances in Communication-Centred Programming. The works here presented are
influential in the whole course of the document, although each chapter has its own
related work specific to that contribution. Subareas related to this research can be
grouped into different categories: research in process calculi, declarative languages
and type systems will be explored here.

1.4.1 Process Calculi

Works about behavioural descriptions of communications grow rapidly, and this small
survey would not do justice to the diversity of calculi proposed with aims of capturing
structured communications and web services2. We can see the research in process
algebras for structured communications in three subcategories: foundational calculi
for communication-centred programming, technologically-inspired calculi and, adap-
tations of general models of concurrency for Communication-Centred Programming.

1.4.1.1 Foundational calculi

In their seminal paper [Misra & Cook 2006], authors presented Orc, a basic pro-
gramming model for structured orchestration of services. With simple primitives like

2A recent survey in [Bruni 2009] presents a broad view in this area.

14 Chapter 1. Introduction

sequential execution, symmetric and asymmetric execution, concepts of computations
between different sites are modelled. It is not meant to be a computational model,
but it provides important insights about properties of choreography between different
processes. In fact, Orc has been compared with several of the standardised work-
flow patterns available at the moment, found it to be expressive enough despite its
reduced syntactic set [Cook et al. 2006]. In later works [Kitchin et al. 2009], Orc
has been introduced as a programming language, featuring constructs for concur-
rent threads, real-time observations [Wehrman et al. 2008], and mutable states. Orc
has served as inspiration for further specialised calculi for service centred compu-
tations, extending the basic formalism with primitives for session handling, stream
processing and pipe-lining, as occurred with the CaSPIS family of calculi [Boreale
et al. 2006, Lanese et al. 2007, Boreale et al. 2008]. Also in a foundational approach,
the authors in [Busi et al. 2006] explore the connections between choreographic and
orchestration languages, in a minimal setting with no types.

1.4.1.2 Technology-inspired calculi

In a different approach, some calculi derived from the standards of business process
languages, such as WS-BPEL [Andrews et al. 2003] and XLANG [Thatte 2001] where
presented. Blite [Lapadula et al. 2008], COWS [Lapadula et al. 2007a] and SOCK
[Guidi et al. 2006] represent some of these efforts. The motivation behind Blite con-
stitutes a great example on the ambiguities one can find when modelling business
processes without a formal semantics: In [Lapadula et al. 2008], a battery of business
processes were tested in leading BPEL engines, and resulting executions exhibited
quite different results with respect to their specifications and with respect to other
engines. This problem not only undermines confidence in the implementations in
question, but complicates the portability of business processes among different en-
gines. Blite is designed as a simplification of WS-BPEL with structured activities,
service definitions, correlation sets and compensation handlers, with a clear opera-
tional semantics amendable to formal verification. A similar approach is taken by the
calculus for orchestration of web services (COWS) [Lapadula et al. 2007a]: While be-
ing foundational in its approach, COWS combines the notion of shared-states present
on WS-BPEL with primitives of interaction already available in classic process cal-
culi (e.g.: synchronous and asynchronous communication, pattern matching, scope
extrusion) to capture complex service interactions that were not captured by Orc,
such as session handling, and message passing between services. In a different view,
SOCK also receives inspiration from web service specifications but conceives ser-
vice oriented computing as the interaction of three different layers: the behaviour of
different services, the deployment of different services in an execution environment
(service engine), and a final level where the interactions between service engines
can take place. Those levels are analysed with individual reasoning techniques, and
the relations between different levels have been formally defined. These efforts can
be considered as technology-driven approaches, in the sense that their conception
is intrinsically linked to the available technology, and permits cross-checking sys-

1.4. Related Work 15

tem functionalities with respect with process calculi constructions. The final goal is
then to provide programming languages built on top of these calculi, such as Jolie
[Montesi et al. 2007] or BliteC [Cesari et al. 2010]. Some efforts related to verification
of technology-inspired calculi have been proposed, including quantitative analysis
[Prandi & Quaglia 2007], and model checking [Fantechi et al. 2008].

1.4.1.3 Adaptation of Calculi

A different trend of research towards formal model of communication-centred pro-
gramming have been the use and extension of existent formalisms in concurrency
theory for the specification of service models: For example, the encoding of business
processes and workflow patterns into the π-calculus [Puhlmann 2007], and long run-
ning transactions [Laneve & Zavattaro 2005] are constructed to solve reconfiguration
and sessioning issues in service interactions, but since they allow unrestricted π-
calculus communications the analysis is difficult, as expressed in [Lanese et al. 2007].

Recent works with motivations similar to ours include CC-Pi [Buscemi & Mon-
tanari 2007] and the calculus for structured communications in [Coppo & Dezani-
Ciancaglini 2009]. CC-Pi combines synchronous communication and a restriction as
in the π-calculus with operations for creating, removing, and making logical checks
over the constraint store, as in Concurrent Constraint Programming [Saraswat 1993].
In CC-Pi, the reasoning techniques associated to CC-Pi are essentially operational,
and used to reason about service-level agreement protocols. Additionally, as the au-
thors note, important properties of the CCP paradigm (e.g.: the notion of consistency)
not longer hold with the introduction of the new process constructors in CC-Pi. In
[Coppo & Dezani-Ciancaglini 2009], the key for analysis is represented by a type
system which provides consistency for session execution, much as in the original
approach in [Honda et al. 1998].

Time and exceptional behaviour issues are in the scope of this thesis. Although
there is a long history of timed extensions for (mobile) process calculi (see, e.g., [Berger
& Honda 2000]) and the study of constructs for exceptional behaviour has received
significant attention (see [Ferreira et al. 2010] for a recent overview), time and its in-
terplay with forms of exceptional behaviour do not seem to have been jointly studied
in the context of models for structured communication, but they have been consid-
ered only separately for orchestrations: With respect to time, Timed Orc [Wehrman
et al. 2008] introduced real-time observations for orchestrations by introducing a de-
lay operator. Timed COWS [Lapadula et al. 2007b] extends COWS (the Calculus for
Orchestration of Web Services [Lapadula et al. 2007a]) with operators of delimitation,
abortion, and delays for orchestrations; we are not aware of reasoning techniques
for Timed COWS. With respect to exceptional behaviour, the work of [Dragoni & Maz-
zara 2010] presents a process algebraic view of compensation handling techniques
in the WS-BPEL using a variant of the π-calculus for long running transactions.
The work in [Hongli et al. 2007] presents a denotational semantics based on traces
for a simple language for choreographies with exception handling and finalisation
constructs, allowing a projection from exceptional behaviour of a choreography to

16 Chapter 1. Introduction

its endpoints. Two points are on consideration here: First, the language used for
choreographies assumes that there is a principal taking the decisions about which
branches to execute. Second, the semantics of the compensating blocks act much like
exceptions in sequential languages, where exceptions are evaluations of expressions,
and there is no treatment for nesting contexts.

1.4.2 Declarative Specifications

ConDec [Pesic & van der Aalst 2006, Pesic 2008] has been proposed as declarative
language for the modelling and enacting of dynamic business processes based on
LTL. In [van der Aalst & Pesic 2006], the authors have proposed Declarative Service
Flow language (DecSerFlow) to specify, enact, and monitor service flows, which is
a sister language for ConDec. Both languages share the same constructs and have
tool support through the Declare tool [van der Aalst et al. 2009]. Both ConDec and
DecSerFlow specify the constraints that need to be fulfilled, instead of specifying how
flows should be programmed, giving more flexibility to users. The semantics of both
languages is defined in terms of LTL formulae, and execution of the workflow/service
flow is given by the execution of the referring Büchi automaton.

Dynamic Condition Response (DCR) graphs [Hildebrandt & Mukkamala 2010] have
recently been proposed as an alternative formalism for declarative event-based work-
flows. Inspired by such works as the declarative process matrix [Lyng et al. 2008]
and prime event structures, DCR graphs are conceived as a generalisation of prime
event structures extended with notions of progress (condition-response relations),
multiple executions dynamic inclusion and exclusion of nets. The declarative flavour
of DCR graphs comes in the way a model is specified: Here, a process model is a
directed graph where each node represents an event in the system, and the relation
between events is given by preconditions (Condition relations), postconditions (Re-
sponse relations) and dynamic inclusions and exclusions of events. In [Hildebrandt
et al. 2011] the authors present a distribution technique for DCR graphs that projects
a workflow specification in terms of their distributed end- points, demonstrating the
soundness of their approach by evidencing bisimilarity between the global process
and its distributed projections.

Finally, [Montangero & Semini 2006] present a logical view of choreography, for-
malising WS-CDL constructs in terms of a distributed-state temporal logic. Although
its aim is in many respects similar to the logical characterisation we provide in Chap-
ter ??, the characterisation provided in [Montangero & Semini 2006] is restricted, and
the language does not provide session support.

1.4.3 Petri Nets

Petri nets [Peterson 1977] and Coloured Petri Nets [Jensen 1994] are one of the most
popular techniques for specifying Workflows and Business Processes. One of the
main selling points of Petri Nets over other formalisms (e.g. process calculi) is that
it provides both a graphical notation and a formal semantics. While the graphical

1.4. Related Work 17

notation allows for Business modellers to focus on the development of processes in
a fast and intuitive way, the formal semantics allows for simulation and checking of
properties of the models. A process model is then represented by the structure of a
Petri net, and the execution of the process is given by the markings inside the net
[van der Aalst 1998, van der Aalst 2003]. While Petri nets are feasible formalisms for
the representation of simple type of workflows, more complex scenarios require spe-
cific modelling constructs related specifically to business processes. Van der Aalst
proposed Workflow nets [van der Aalst 1998]. A Workflow net is a strongly-connected
coloured Petri net with special places denoting start and end of procedures within a
workflow, that can be organised hierarchically to abstract different levels in the speci-
fication of each process. Starting from the application of workflow nets in the industry,
a guide to desirable workflow characteristics is provided by the well-known work-
flow patterns which are derived from a comprehensive survey of contemporary tools
and modelling formalisms [van Der Aalst et al. 2003]. Such patterns are technology-
agnostic, and they have been also used in relation to process-calculi [Puhlmann &
Weske 2005] and declarative languages [Pesic 2008]. Although related to this thesis,
the approach based on Petri nets places emphasis on the control flow, rather than the
communicating nature of workflows, and focuses the analysis on a central (global)
view rather than on distributed end points.

Recently, a language derived from Workflow nets has been conceived as an effort
towards a common, comprehensive modelling language for business processes based
on formal foundations. The Yet Another Workflow Language (YAWL for short) [Van
Der Aalst & Ter Hofstede 2005, Russell et al. 2009] is an adaptation of the Petri net
model used to describe workflow patterns, with a definition of its execution semantics
in terms of state transition systems. The main aim is to define a minimal set of
language constructs that could support the description of workflow patterns already
identified, and can coexists inside the workflow solutions already present in the
market, giving in this way a common understanding of the activities in a workflow
management system, and eliminating some of the ambiguities present when each
workflow management system defines its own execution semantics. This motivation
is closer to our approach (and in general, with the vision of process calculi), as it
defines a minimal set of language constructs with a well defined semantics where
workflows can be studied.

1.4.4 Type Systems

Type disciplines to control the way interactions are performed date back to the
works on sortings for the polyadic π-calculus [Milner 1991], and later in [Pierce &
Sangiorgi 1993], [Takeuchi et al. 1994] and [Honda et al. 1998]. Here, π-calculus
processes denote communication flows (interactions) between different parties. The
communication is seen at a local level, and features constructs for message passing,
labelled selection and delegation of responsibilities. Names (sessions) are used to
ensure that interactions are different among themselves, and that processes involved
in different interactions can keep a coherent track of them by the use of different

18 Chapter 1. Introduction

names. The type discipline (session types) guarantee that processes are engaged in
interactions in a structured and complementary way. That is, if the specification of a
scenario involves two participants sending and receiving information, there is a bal-
ance between dual communication primitives (inputs and outputs) and the causality
relation between messages is respected.

The works on session types in [Honda et al. 1998] have been recently evolved in
a methodology for Communication-Centred Programming. In [Carbone et al. 2007],
a correspondence between global types (describing interactions at a choreograph-
ical level) and local types (describing interactions of end points) is presented. As
described before, global descriptions can be realised by end-point specifications,
in a sound and complete way that ensures that all (and only) the communication
behaviour described by the global types is present in their end points.

The connections between logics and session types have been explored in differ-
ent works. Here we comment on some of the most representative exponents, namely
[Coppo & Dezani-Ciancaglini 2009, Caires & Pfenning 2010, Bocchi et al. 2010, Gor-
don & Fournet 2009, Berger et al. 2008]. In [Coppo & Dezani-Ciancaglini 2009], a
calculus combining notions of concurrent constraint programming and name passing
is proposed. The resulting calculus treats sessions as constraint formulae represent-
ing the requirements to be satisfied in a client-server communication, in a similar
approach to the CC-Pi calculus explained above. As communications are represented
as constraints, the type discipline takes account of how processes and constraints are
related, guaranteeing that communications follow an structured order as in [Honda
et al. 1998].

The relationship between session types and linear logics has been explored in
[Caires & Pfenning 2010], where the authors establish a bidirectional correspondence
between the session types and (dual) intuitionistic linear logic formulae. The cor-
respondence is tight, and relates the existence of a simulation between reductions
in session types and proof reductions in dual intuitionistic linear logic, and vice
versa. In [Pérez et al. 2012], the authors make use of the linear logic interpretation
of session types to describe a theory of logical relations for session types, allowing
one to study properties like termination of well-typed interactions, and behavioural
characterisations of session-typed isomorphisms as linear logic equivalences.

Type and effect systems have been used to study structured communications. In
[Gordon & Jeffrey 2003], the π- calculus is extended with labelled assertions describ-
ing progress in their communication steps. Assertions have complementary opera-
tions, and one can ensure that the communication is safe if all specified assertions
have their correspondent begin-end operations present in the run of a protocol. In
[Bonelli et al. 2005], the theory of session types with corresponding assertions is
studied, providing stronger guarantees for session types, in the sense that corre-
spondence assertions allow one to keep track of the changes to the data transmitted
over sessions, and the way data is propagated across multiple parties.

Relations between types and logics can also give more information about the
nature of structured communications. In [Bocchi et al. 2010], authors proposed the in-
tegration of typed-based signatures with logical predicates as a method to guarantee

1.4. Related Work 19

finer grained properties about the information in transit in structured interactions.
The proposed a methodology (Design by contract), constitutes an extension of mul-
tiparty session types [Honda et al. 2008] with global assertions, describing global
constraints on processes’ interactions in terms of predicate logic formulae. In this
way, types not only describe causal relations between the inter-process communi-
cations, but they also fulfil constraints regarding the values in transit.

In [Berger et al. 2008], a proof systems characterising May/Must testing pre-orders
and bisimilarities over typed π-calculus processes is presented. The connection
between types and logics in such system comes in handy to restrict the shape of the
processes one might be interested in, allowing us to consider such work as a suitable
proof system for calculi describing the communication of end points.

In the context of security, the work on F7 [Gordon & Fournet 2009] has explored the
integration of dependent and refinement types in a suite of functional programming
languages, with the aim of statically checking assertions about data and state, in
order to enforce security policies.

It is important to relate this research to related approaches involving types and
timed constraints and exceptional behaviour. With respect to exceptional behaviour,
[Carbone et al. 2008] proposed a language for interactional exceptions, in which ex-
ceptions in a protocol generate coordinated actions between all peers involved. Asso-
ciated type systems ensure communication safety and termination among protocols
with normal and compensating executions. In [Capecchi et al. 2010], the language
is enriched further with multiparty session and global escape primitives, allowing
nested exceptions to occur at any point in an orchestration. As for choreographies,
[Carbone 2008] introduced an extension of a language of choreographies with try/catch
blocks, guaranteeing that embedded compensating parts in a choreography are not
arbitrarily killed as a result of an abort signal. With respect to timing behaviour,
[Berger & Yoshida 2007] proposes typing analysis techniques for a variant of the
asynchronous π-calculus with locations and time windows. A linear/affine type dis-
cipline presents a way to integrate time and linearity conditions in the analysis of
interactions: by typing timed processes, one is able to provide further guarantees
about the liveness conditions of the systems in consideration, allowing us to consider
cases where messages are lost or participants involved do not reply.

Part of the research presented in Chapter 6 is based on the conversation calculus.
Types in the conversation calculus are flexible structures that allow us to describe
global and local views of the systems in a uniform manner [Caires & Vieira 2010].
Compared to session types, the type discipline for the conversation calculus is a
generalisation of the theory of end-point projections where global and end-point
types are expressed at the same level. Moreover, global types do not correspond to
fixed participants but can be instantiated at runtime, allowing for scenarios where
dynamic reconfigurations of multiparty sessions (delegation for instance) is captured
by the types.

20 Chapter 1. Introduction

1.4.5 Behavioural Contracts

Parallel to session types, a theory of contracts has emerged in recent years. Con-
tracts are behavioural descriptions of web services [Castagna et al. 2008, Bravetti
& Zavattaro 2008], and formalise notions of compatibility between services and safe
replacement of services. In particular, a contract can be seen as the description of the
external, observable behaviour of a service, or as behavioural types of processes that
do not represent the internal structure nor parallelism. Contracts are endowed with
subcontract relations, describing pre-orders between implementations of services and
the general specifications given in the contracts, in a way similar to semantic sub-
typing in [Castagna et al. 2005]. In this way, services can be exchanged as long as
they are both subcontracts of the same contract specification. Authors in [Laneve
& Padovani 2008] explore the relations between contracts and session types, and
present a series of encodings from session types to contracts and vice versa. Related
to such encodings, this work shows that while the encoding from session types to
contracts is straightforward and almost homomorphic with respect to the operations
in contracts, the converse relation (from contract specifications to session types) is
far more complex, and manifests an exponential blow up of the encoded contract in
session types. That is due to the level of abstraction used in the description of con-
tracts, which is suggested to be higher than the one in session types. In [Castagna &
Padovani 2009] the correspondence between contracts and session types is extended
further, by adding contract specifications with explicit channel names that allows one
to describe properties about message exchanges, delegation, and dynamic reconfig-
uration in terms of contracts. A logic for contracts has been proposed in [Bartoletti &
Zunino 2010], where elements of the π-calculus, concurrent constraint programming
and the fusion calculus [Victor & Parrow 1998] are combined in a language describing
contract relations between multiple participants. Evolution in such calculus depends
on the satisfaction of constraints regarding the contract specification given by each
participant. In this way, the calculus describe satisfaction of “contractual specifica-
tions” much in the way of Service-Level Agreements [Buscemi & Montanari 2007].
Although this research gives a different outlook on contracts in service specifications,
they can be seen as a declarative underspecified specification of which behavioural
contracts are an implementation.

1.4.6 Modelling Standards

We want to relate this work to the modelling standards used in the industry. The
Business Process Modelling Notation (BPMN) [Object Management Group 2011] is an
effort towards a unified modelling language for business processes, and has emerged
as the de-facto modelling notation in industry. BPMN was designed to provide a
graphical notation for XML-based business process languages, such as WS-BPEL
[Andrews et al. 2003]. With it, business analysts can take advantage of the use of
BPMN since they can exploit facilities for generating executable WS-BPEL code
from BPMN graphical models [Ouyang et al. 2006]. However, the specification of

1.5. Organisation and Structure 21

BPMN as a language is rather informal and leaves ambiguity about its semantics
[Recker & Mendling 2006, Dijkman et al. 2007b, Dijkman et al. 2007a], making BPMN
models unsuitable for formal verification. Only recently, encodings of BPMN into
different process calculi such as CSP [Hoare 1983] and COWS have been provided
as an way to guarantee a formal account of BPMN [Wong 2010, Prandi et al. 2008].
Finally, Message Sequence Charts (MSCs) [Harel & Thiagarajan 2004] appeared as
a technique for describing patterns of interaction between participants in distributed
systems, and it has been used in the industry (e.g., telecommunication) to describe
the global behaviour from a global point of view. Albeit theoretical, some efforts
suggest that global descriptions in MSCs can have an equivalent of the end-point
projection. A MSC is realisable if the interfaces generated from the it guarantee
causality relations between inputs and outputs [Broy 2007].

1.5 Organisation and Structure

Chapters 3–7 of this dissertation each consists of a single paper. Each chapter
can be read independently, and each concludes with a summary of its content and
a discussion about related work. Albeit independent, some relations on the reading
order of each chapter are presented in Section 1.5.2. The contribution of each chapter
is described as follows:

Chapter 2 [Technical Background] This chapter provides the theoretical background
for the thesis. We introduce fundamental concepts on process calculi for Com-
munication -Centred Programming, including the π-calculus, Universal Tempo-
ral Concurrent Constraint Programming (utcc), Languages for structured com-
munication and the Conversation Calculus. Moreover, we recall concepts of
session types, and behavioural relations between processes.

Chapter 3 [A Unified Framework for Structured Communications] This chapter is a
first endeavour towards a unified framework for the declarative analysis of
structured communications. Starting from Universal Temporal Concurrent Con-
straint Programming (utcc), we provide relations between temporal logics and
orchestration languages. This is realised by using utcc to give a declarative
interpretation to the language of orchestrations of [Honda et al. 1998]. This
way, services can be analysed in a declarative framework where time is de-
fined explicitly, and their behaviour compared to formulae in LTL. Moreover, the
selected language is prone to timed extensions: an orchestration language can
be benefited from the inclusion of timed information on the duration of sessions,
declarative preconditions within session establishment constructs, and session
abortion primitives.

Chapter 4 [Types for Security and Mobility in Universal CCP] In this chapter, we
dive deep into aspects regarding mobile and secure communications in Con-
current Constraint languages, which are prime concerns in Communication-
Centred Programming. As described before, Universal Temporal Concurrent

22 Chapter 1. Introduction

Constraint Programming (utcc) is a recent addition to the family of Concurrent
Constraint languages that introduces the possibility of universally quantify over
predicates in the constraint store. We present how utcc can capture mobility
and access control of information flow. To do so, we proposed utcc� , an ex-
tension of utcc with a type system for constraints used as patterns in process
abstractions, which essentially allows us to distinguish between universally
abstractable information and secure (non-leakable information) in predicates.
We also proposed a novel notion of abstraction under local knowledge, which
gives a general way to model that a process (principal) knows a key and can
use it to decrypt a message encrypted with this key without revealing the key.

Chapter ?? [A logic for Choreographies] We explore logical reasoning for the global
calculus, a coordination model based on the notion of choreography, with the
aim to provide a methodology for specification and verification of structured
communications. Starting with an extension of Hennessy-Milner logic, we
present the global logic (��), a modal logic describing possible interactions
among participants in a choreography. We illustrate its use by giving examples
of properties of service specifications. Finally, we show that, despite �� is
being undecidable, there is a significant decidable fragment which we provide
with a sound and complete proof system for checking validity of formulae.

Chapter 5 [Modal Logics for Structured Communications] We build upon the results
presented in Chapter ?? to develop a full a framework integrating imperative
and declarative views for structured communications. Starting from languages
for the specification of services, we provide a modal logic characterisation of
the interactions occurring in a system, both from a global standpoint and from
the views of each participant. The framework copes with two aims: exhibiting
logical guarantees about the presence of an interaction, and model generation
from logical specifications.

Chapter 6 [Time and Exceptional Behaviour in Multiparty Structured Interactions
] The Conversation Calculus (CC) is an extension of the π-calculus, intended as
a model of multiparty interactions. The CC is built upon the notion of conversa-
tion—a possibly distributed medium in which participants may communicate.
We study the interplay of time and exceptional behaviour for models of struc-
tured communications based on conversations. We propose C3, a timed variant
of the CC in which conversations feature both standard and exceptional be-
haviour. The exceptional behaviour may be triggered either by the passing of
time (a timeout) or by an explicit signal for conversation abortion. We argue
that the combination of time and exceptional behaviour greatly enhances the
significance and level of detail of specifications of structured communications.

Chapter 7 [Towards Refinement Relations in Open Specifications] Here we present
initial ideas on Open Specifications. An open specification describes the be-
haviour of a system in terms of activities that can be refined. We comment

1.5. Organisation and Structure 23

on different notions of refinement for open specifications. First, we propose a
new denotational behavioural model called open mixed trees which generalises
standard model of labelled trees (where labels are marked as negative, positive
or both) by annotating each state with a set of so-called open actions and a
flag indicating if termination is allowed in the state or not. The definition of
refinement is then a generalisation of covariant-contravariant simulation that
also takes account of termination and allows intermediate open parts of the
specification. Second, we explore transition systems with responses for the
specification of open systems. A transition system with responses is a new
generalisation of modal transition systems that allows for natural of deadlock
freedom and liveness for infinite computations. Here we present a definition of
refinement that fits transition systems with responses.

1.5.1 Publication list

This thesis compiles the results published in the following articles:

[Hildebrandt & López 2009] Thomas Hildebrandt and Hugo A. López. Types for Se-
cure Pattern Matching with Local Knowledge in Universal Concurrent Con-
straint Programming . In 25th International Conference on Logic Programming
(ICLP), volume 5649 of Lecture Notes in Computer Science, pages 417–431.
Springer, Berlin Heidelberg, 2009

[López et al. 2010] Hugo A. López, Carlos Olarte and Jorge A. Pérez. Towards a Uni-
fied Framework for Declarative Structured Communications. In 2nd Workshop
on Programming Language Approaches to Concurrency and Communication-
cEntric Software (PLACES), volume 17 of EPTCS, pages 1–15, 2010

[López 2010] Hugo A. López. Models for Trustworthy Service and Process Oriented
Systems. In 26th International Conference on Logic Programming (ICLP), vol-
ume 7 of Leibniz International Proceedings in Informatics (LIPIcs), pages 270–
276, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik

[Carbone et al. 2010] Marco Carbone, Thomas Hildebrandt, Davide Grohmann and
Hugo A. López. A logic for Choreographies. In 3rd Workshop on Program-
ming Language Approaches to Concurrency and Communication-cEntric Soft-
ware (PLACES), 2010

[López & Pérez 2011] Hugo A. López and Jorge A. Pérez. Timed, Compensable Con-
versations. In 4th Programming Language Approaches to Concurrency and
Communication-cEntric Software (PLACES), 2011

[López & Pérez 2012] Hugo A. López and Jorge A. Pérez. Time and Exceptional
Behavior in Multiparty Structured Communications. In Marco Carbone and
Jean-Marc Petit, editors, Web Services and Formal Methods (WS-FM), volume
(To appear) of Lecture Notes in Computer Science. Springer, 2012

24 Chapter 1. Introduction

[Carbone et al. 2011] Marco Carbone, Thomas Hildebrandt and Hugo A. López. Open
Mixed Refinement. In Nordic Workshop of Programming Theory (NWPT), Västerås,
Sweden, November 2011

[Carbone et al. 2012] Marco Carbone, Thomas T. Hildebrandt, Hugo A. López, Gian
Perrone and Andrzej Wasowski. Refinement for Transition Systems with Re-
sponses. In 4th International Workshop on Foundation of Interface Technologies
(FIT), 2012. Accepted for publication

The following paper is not part of this dissertation, but it contributed by providing
some details on the case studies here explored.

[López et al. 2009] Hugo A. López, Fabio Massacci and Nicola Zannone. Goal-
Equivalent Secure Business Process Re-engineering. In E. Di Nitto and M. Ri-
peanu, editors, Service-Oriented Computing - ICSOC 2007 Workshops, volume
4907 of LNCS, pages 212—223, Berlin, Heidelberg, January 2009. Springer -
Verlag

1.5.2 Document Structure
“All disorder had meaning if it seemed to come out of itself, perhaps
through madness one could arrive at that reason which is not the
reason whose weakness is madness. «To go from disorder to order»,
thought Oliveira.” Julio Cortázar, Hopscotch, Chapter 18.

As described at the beginning of this section, each chapter can be considered
as self-contained document per se, and therefore the reader is free to choose a
convenient reading order according to his/her preferences. To provide some hints,
some clear connections between the chapters will be outlined below.

Figure 1.4 describes the links between each chapter. The ordering between the
first two chapters (Introduction and Preliminaries) is pretty obvious. After Chapter
2 one might chose to read any paper between Chapter 3 and Chapter 7. Chapter
8 concludes and discusses possible strands for future work. Some extra links are
provided, and can be of help for the lost reader:

• Chapters 3 and 4 are both contributions on Temporal Concurrent Constraint
Programming. They share the same language definition and therefore a com-
bined reading is suggested.

• Chapter ?? and Chapter 5 relate to the connection between logics and struc-
tured communications, where Chapter ?? presents a logical formalisation for
choreographies and Chapter 5 extends such work towards full logical charac-
terisation for the Global and End-Point Calculus. Therefore, a linear reading
between both chapters is suggested.

• The notions of time and exceptional behaviour are present in Chapter 3 and
Chapter 6. In fact, one can consider the work in Chapter 3 as the main source

1.5. Organisation and Structure 25

Chapter 1

✏✏
Chapter 2

""{{

⌅⌅

✏✏

✏✏

Chapter 3 --

✏✏

##

Chapter 4mm

Chapter ?? //

##

Chapter 5

{{

Chapter 6

Chapter 7

✏✏
Chapter 8

Figure 1.4: The structure of this thesis

of inspiration for timing analysis of structured communications, that will be
explored later in Chapter 6. Therefore, an ascending order between these two
chapters is suggested.

• The idea of partial specifications in structured communications that have been
put forward in Chapter ?? and Chapter 5 is later explored in terms of behavioural
(refinement) relations between processes, which appears in chapter 7. A linear
reading between them might be useful.

Chapter 2

Technical Background

Contents
2.1 Process Calculi . 27

2.1.1 A Process Calculus for Mobile Systems 27
2.1.2 (Temporal) Concurrent Constraint Programming 32
2.1.3 Languages for Structured Communications 36
2.1.4 The Conversation Calculus . 42

2.2 Verification . 44
2.2.1 Linear Temporal Logic . 44
2.2.2 Session Types for the Global Calculus 45
2.2.3 Session Types for the End-Point Calculus 47
2.2.4 End Point Projection . 49

2.3 Behavioural Equivalences between Processes 52
2.3.1 Simulations & Bisimulations . 52
2.3.2 Testing Theories . 53

2.1 Process Calculi

Let us illustrate the interplay of the above issues by introducing one of the most
representative process calculus for mobility.

2.1.1 A Process Calculus for Mobile Systems

The π-calculus [Milner 1999, Sangiorgi & Walker 2001], was proposed by Milner,
Parrow and Walker in the early 90’s for the analysis of mobile, distributed systems.
The ability of representing link mobility is one of the main advances of the π-calculus
with respect CCS (Calculus for Communicating Systems) [Milner 1995], its immediate
predecessor. In the π-calculus, the description of mobile systems and their inter-
actions is based on the notion of name. In principle, a process (an abstraction of
a mobile agent) should be capable of evolving in many different ways, but always
maintaining its identity during the whole computation. In addition, a process should
be capable of identifying other related processes. In the π-calculus a name also
denotes a communication channel, in such a way that communication among two
processes is possible provided that they share the same channel. As a consequence,

28 Chapter 2. Technical Background

in the π-calculus a name abstracts the identity of processes in an interaction by
considering the communication channel each process is related to.

In the π-calculus, process capabilities are abstracted as atomic actions. They
come in two main flavours:

• �(�), representing the reception (or reading) of the datum � on the channel � .
� is then ready for any subsequent computations.

• ����, denoting the transmission of a datum � over the channel � .

Actions (denoted by α) are used in the context of processes that are constructed by
the following syntax:

P� Q� � � � ::= 0

|
�

�∈I
α��P�

| P | Q
| !P
| (ν�) P

Some intuitions underlying the behaviour of these processes follow.

• Process 0 represents the process that does nothing. It is meant to be the basis
of more complex processes.

• The interaction of processes P and Q is represented by their parallel com-
position P | Q. In addition to the individual actions of each process, their
communication is possible, provided that they synchronise on a channel, as
illustrated in the following example.

R = �(�)������0 | ����� 0

Here, R represents the interaction of two processes sharing a channel � . The
transmission of � through � is complemented by its reception, which involves
recognising � as �. This is regarded as an atomic computational step. Af-
terwards, a datum � is sent, using the received name � as communication
channel. Notice that in the context of R , there is no partner for � in its attempt
of transmitting � .

•
�

�∈I α��P�, usually known as a summation process, represents a choice on the
involved P�’s, depending on the capabilities represented by each α�. Only when
any such processes is ready to interact with another one, a choice among all
the possible interaction options takes place. For instance, in the process

(�(�)� ����� 0 + �(�)� 0 + �(�)� �(�)� 0) | ����� 0

2.1. Process Calculi 29

the first and third components of the sum are ready to interact with ����� 0.
Depending on the choice, different resulting processes are possible. For in-
stance, if the third component is selected, the resulting interaction would lead
to the process �(�)� 0.

• Process !P represents the infinite execution (or replication) of process P . There
will be an infinite number of copies of P executing: !P = P | P | P | � � �.

• Process (ν�) P is meant to describe restricted names. Name � is said to be
local to P and is only visible to it. We often write (ν�̃) P to stand for the
process (ν�1) (ν�2) � � � (ν��) P . A disciplined use of restricted names is crucial
in delimiting communication.

The π-calculus is thus a language based in a few simple, yet powerful, abstrac-
tions. In addition to the above-mentioned abstraction of name as communication
channels that can be transmitted, in the π-calculus the behaviour of mobile systems
is reduced to a few representative phenomena: synchronisation on shared channels,
infinite behaviour and restricted communication. The compositional nature of the
calculus is elegantly defined by the parallel composition operator, which is the basis
for representing interactions among processes and the construction of models.

Meaning of Processes Endowing process terms with a formal meaning is crucial in
order to analyse process behaviour. A process language can have several semantic
interpretations. In fact, the combination of two or more approaches is a common
practice, since for instance, an approach can be more appropriate for intuitive under-
standing of processes whereas others can be more suitable for mathematical proofs.
This is usually the case of Operational Semantics and Denotational/Algebraic ones.
The use of several semantics motivates a legitimate question, that of determining
whether different semantics are equivalent to each other. Lets illustrate the use of a
semantics with the introduction of an operational semantics for the π-calculus.

Operational Semantics An operational semantics interprets a process term by
using transitions that define computational steps [Plotkin 1981]. A common practice
is to capture the state of the system by means of configurations: succinct structures
including a process term and other relevant information to describe the state of the
system (for instance, one could include the state of the variables in the configuration).

First we define transition systems as in [Joyal et al. 1993].

Definition 2.1.1 (Transition Systems [Joyal et al. 1993]). A transition system T is a
quadruple (S� I� −→� Act) where S is a set of states, I ⊆ S is the set of initial states,
−→⊆ S × Act × S is the transition relation and Act is a set of labels.

Sometimes it is useful to consider transition systems without initial states, as
introduced in [Keller 1976]. These special kind or transition systems are referred as
Labelled Transition Systems (LTS), and can be thought of as an automaton without a
start state or accepting states. Transitions are usually labelled by the actions that

30 Chapter 2. Technical Background

Pinput

�(�)� P �(�)−→ P

Poutput

����� P ����−→ P
Psynch

P �(�)−→ P � Q ����−→ Q�

P | Q τ−→ P � | Q�{�/�}

Prep
P | !P α−→ P �

!P α−→ P �

Psum
P α−→ P �

P + Q α−→ P �

Pres
P α−→ P � � �∈ �(α)

(ν�) P α−→ P �

Ppar
P α−→ P �

P | Q α−→ P � | Q

Pclose

P ����−→ P � Q �(�)−→ Q�

P | Q τ−→ (ν�) (P � | Q�)
Popen

P ����−→ P �

(ν�) P �(�)−→ P �[�/�]

� �= �� � �∈ ��((ν�) P �)

Figure 2.1: Operational semantics of the (late) π-calculus with no matching, sym-
metric rules for + and | are elided

originate evolution between configurations. This is commonly denoted as P �−→ Q,
meaning that process P performs action � and then behaves as process Q.

Definition 2.1.2 (Labelled Transition Systems). A labelled transition system T is a
triple (S� Act�

�
−−→) where S is a set of states, Act is a set of transition labels, and

−→⊆ S × � × S is the labelled transition relation such that � ∈ Act.

Operational semantics are then defined by a set of (transition) rules that formally
define the features of the relation �−→. The set of transition rules that constitute the
operational behaviour of a calculus is also known as its LTS.

As an example, consider the rule that formalises the communication of interacting
processes in the π-calculus:

�(�)�P | ����� Q τ−→ P{�/�} | Q�

In this (labelled) rule, P{�/�} denotes the syntactic replacement of all occurrences
of the name � with the name � in the context of process P . We use ��(α) and ��(α)
to denote the set of free and bound names in action (α). The set of names in α is
defined as �(α) = ��(α) ∪ ��(α). The set of transition rules for the late π-calculus
with no matching is presented in Figure 2.1.

We will use variations of operational semantics in Chapters 3,4, ??,6.

Reduction Semantics The LTS describes not only the autonomous evolution of
processes, captured by τ transitions, but also the interactions with the external en-

2.1. Process Calculi 31

vironment. When we focus on closed systems, not subject to interaction with the
environment, we are only interested on autonomous behaviour (τ transitions), which
we capture by a notion of reduction.

Definition 2.1.3 (Reduction Relation →). The relation of reduction between pro-
cesses, noted P → Q, is defined as P

τ
−−→ Q. Also, we denote by →∗ the reflexive

transitive closure of the reduction relation.

Using the behavioural descriptions captured by the LTS we define a behavioural
semantics, which then precisely characterises when two systems have the same be-
haviour, and thus correspond to the same specification from a behavioural point of
view.

We will use a variation of the reduction semantics of the π-calculus in Chapter 3.

Assertion Semantics An assertion (or logical) semantics gives meaning of process
interactions in terms of a language with well-defined and intuitively understanding
semantics. Usually, the language selected for an assertion semantics has a logical
flavour, and allows a user to describe properties about the evolution of a process
specification (Model checking).

In what follows, we hall present a property language that was introduced in
process theory by [Hennessy & Milner 1985]. We are going to refer to this language
as the Hennessy-Milner Logic (HML).

Definition 2.1.4 (Hennessy-Milner Logic). The set � of Henessy-Milner formulae
over a set of actions Act is given by the following abstract syntax:

F � G ::=tt
| ff
| F ∧ G
| F ∨ G
| ���F
| [�]F

where � ∈ Act and tt, ff denote logical true and false, respectively.

The satisfaction relation |= relates processes to HML formulae by structural in-
duction on formulae such that:

P |= tt for each P
P |= ff for no P
P |= φ ∧ χ iff P |= φ and P |= χ
P |= φ ∨ χ iff P |= φ or P |= χ
P |= ���φ iff P

�
−−→ P � and P � |= φ

P |= [�]φ iff P
�

−−→ P � and P � |= φ for all P �

32 Chapter 2. Technical Background

We will explore the uses of process characterisations in terms of variants of the
HML logic and Linear Temporal Logic (LTL) further in Chapters 3,4 and Chapter ??.

2.1.2 (Temporal) Concurrent Constraint Programming

This section provides the interested reader the main concepts of Concurrent Con-
straint Programming (CCP), Temporal Concurrent Constraint Programming (tcc) and
its universal extension (utcc), following the presentation of [Olarte & Valencia 2008a].

Concurrent Constraint Programming (CCP) was first introduced by Vijay Saraswat
in [Saraswat 1993] as a rich family of programming languages where (partial) infor-
mation plays a fundamental in the computation and control of concurrent programs. In
CCP-based calculi all the (partial) information is monotonically accumulated in a so-
called store. The store keeps the knowledge about the system in terms of constraints,
or statements defining the possible values a variable can take (e.g., �+� ≥ 42). It also
defines an entailment relation “�” specifying interdependencies among constraints.
Intuitively, � � � means that the information in � can be deduced from that in c (as in,
e.g., � ≥ 42 � � ≥ 0). Concurrent agents (i.e., processes) that are part of the system
interact with each other using the store as a shared communication medium. They
have two basic capabilities over the store, represented by tell and ask operations.
While the former adds a piece of information about the system, the latter queries
the store to determine if some piece of information can be inferred from its current
content. Tell operations can act concurrently refining the information in the store
while asks can serve as a general synchronisation mechanism, that will be blocked
if there is not enough information into the store to answer its query.

A fundamental notion in CCP-based calculi is that of a constraint system. Ba-
sically, a constraint system provides a signature from which syntactically denotable
objects in the language called constraints can be constructed, and an entailment
relation (�) specifying interdependencies among such constraints. More precisely,

Definition 2.1.5 (Constraint System). A constraint system is a pair CS = (Σ� ∆)
where Σ is a signature of function (F) and predicate (P) symbols, and ∆ is a decidable
theory over Σ (i.e., a decidable set of sentences over Σ with at least one model).
The underlying language � of (Σ� ∆) contains the symbols ¬� ∧� ⇒� ∃ denoting logical
negation, conjunction, implication, existential quantification. Constants, such as tt and
ff denote the usual always true and always false values, respectively. Constraints,
denoted by c� d� � � � are first-order formulae over �. We say that c entails d in ∆,
written c �∆ d (or just c � d when no confusion arises), if c ⇒ d is true in all models
of ∆. For operational reasons we shall require � to be decidable.

Timed concurrent constraint programming (tcc) [Saraswat et al. 1994, de Boer
et al. 2000] extends CCP for modelling reactive systems. In tcc, time is conceptually
divided into time units (or discrete time intervals). In a particular time unit, a tcc
process P gets an input (i.e. a constraint) c from the environment, it executes with
this input as the initial store, and when it reaches its resting point, it outputs the
resulting store d to the environment. The resting point determines also a residual

2.1. Process Calculi 33

process Q which is then executed in the next time unit. Here it is where one of the
most important differences between CCP and tcc resides, as whilst the refinement of c
during the execution of P at interval � is monotonic, d is not necessarily a refinement
of c (that is, constraints can be forgotten).

Definition 2.1.6 (tcc process syntax). Processes P� Q� � � � ∈ P��� are built from
constraints � ∈ � and variables � ∈ � in the underlying constraint system by the
following syntax.

P� Q � � � ::=skip
| tell (c)
| when c do P

| P
n

Q

| (local �� ; �)P
| next (P)
| unless � next (P)
| !P

Intuitively, the process skip does nothing, tell (c) adds a new constraint c into
the store, while when c do P asks if c is present into the store in order to execute
P . A process (local �� ; c) P binds the variables �� in P by declaring them private to
P under a constraint c. If c = tt, we write (local ��) P instead of (local �� ; tt) P . The
operators associated with time allow the process to go one time unit in the future
(next (P)) or to define time-outs: if at the current time unit it is not possible to entail
the constraint c then the process unless c next P will execute P at the next time unit.
We will often use next� (P) as a shorter version of next (next (� � � next (P))) n-times.
Finally, P

f
Q denotes the usual parallel execution and !P denotes timed replication;

that is, !P = P
f

next (!P) executes P at the current time and replicates its behaviour
over the next time period.

utcc [Olarte & Valencia 2008a] is an extension of the tcc calculus with a gen-
eral ask defining a model of synchronisation. While in tcc an ask when c do P is
blocked if there is not enough information to entail � from the store, utcc inspires its
synchronisation mechanism on the notion of abstraction in functional programming
languages.

Definition 2.1.7 (utcc processes). The syntax of utcc processes result from replacing
process when c do P in Definition 2.1.6 with the abstraction process (λ �� ; c) P .

(λ �� ; c) P can be seen as the dual version of (local �� ; c) P in which the variables are
abstracted with respect to the constraint c and the process P . A process Q = (λ �� ; c) P
binds the variables �� in P and c. It executes P [��/��] for every term �� s.t. the current
store entails an admissible substitution over c[̃t/x̃]. The substitution [��/��] is admissible
if |��| = |��| and no �� in �� occurs in �� . Furthermore, Q evolves into skip at the end of

34 Chapter 2. Technical Background

RT

�tell (d)� c� −→ �skip� c ∧ d�

RA
� � �[��/��] [��/��] is admissible

�(λ �� ; c) P� d� −→ �P [��/��]
f
(λ �� ; c ∧ (x̃ �= t̃)) P� d�

RP
�P� c� −→ �P �� c��

�P
f

Q� c� −→ �P � f Q� c��

RU
� � �

�unless c next P� d� −→ �skip� d�

RR

�!P� c� −→ �P
f

next (!P)� c�

RL
�P� (∃x̃d) ∧ c� −→ �P �� (∃x̃d) ∧ c��

�(local �� ; c) P� d� −→ �(local �� ; c�) P �� (∃x̃c�) ∧ d�

RO
�P� c� −→∗ �Q� d� �−→

P
(���)

======⇒ F (Q)

Where F (Q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

skip if Q = skip
F (Q1)

f
F (Q2) if Q = Q1

f
Q2

R if Q = next (R)
skip if Q = (λ �� ; c) R
(local ��) F (R) if Q = (local �� ; c) R
R if Q = unless c next R

Figure 2.2: Transition System for utcc: Internal and Observable transitions

the time unit, i.e., abstractions are not persistent when passing from one time unit to
the next one.

The operational semantics provides the intuitions on how utcc processes interact.
In principle, a configuration is represented by the tuple �P� c� where P denotes a set
of processes and c a constraint store. P can evolve to a further process P � during an
internal transition (−→) where the constraint store c is monotonically refined, or can
execute an observable transition (=⇒), producing the result of the future function of
P and the constraint store d. The set of operational rules is presented in Figure 2.2,
where �P� c� denotes a configuration, and F (Q) denotes the future function of process
Q.

Intuitively, the operational rules of utcc behaves almost in the same way as
its counterpart in tcc, excepting by the general treatment of asks in utcc. Here
we will describe the operational consequence of this change, we refer to [Olarte &
Valencia 2008a] for further details on the operational semantics. Rule RA describes
the behaviour of the abstraction (λ �� ; c) P : a configuration here considers two stores,
being c and d local and global stores respectively. If d entails c[̃t/x̃] then P [��/��]

2.1. Process Calculi 35

is executed. Moreover, the abstraction persists in time, allowing any other process
to match with �� in P while no other replacements of �� with �� will occur, as d is
augmented with a constraint disallowing this.

The notion of local information can be evidenced in RL, considering a process
P = (local �� ; c) Q, we have to consider: (i) that the information about �� locally for P
subsumes any other information present for the same set of variables in the global
store; therefore, �� is hidden by the use of an existential quantifier over x̃ in d. (ii)
that the information about �� that P can produce after the reduction is still local,
so we hide it by existentially quantifying �� in c� before publishing it to the global
store. After the reduction, c� will be the new local store of the evolution of internal
processes.

Finally, observable behaviour is described by Ro: after having used the internal
transitions in a process P to evolve to a process Q with a quiescent-point (in which
no more information can be added/inferred), the reduction will continue by executing
the future function of Q with the resulting constraint store.

Assertion Semantics utcc provides a number of reasoning techniques: First, for a
significant fragment of the calculus, the input-output behaviour of a process P can
be retrieved from the set of fixed points of its associated closure operator [Olarte &
Valencia 2008b]. Second, utcc processes can be characterised as First-order Linear-
time Temporal Logic (FLTL) formulae [Manna & Pnueli 1992] (See section 2.2.1). This
declarative view of the processes allows for the use of the well-established verifica-
tion techniques from FLTL to reason about utcc processes.

Definition 2.1.8 (Output Behaviour). Let � = �1��2������ be a sequence of constraints.
If P = P1

(tt��1)
===⇒ P2

(tt��2)
===⇒ � � � P�

(tt���)
===⇒ P�+1 ≡� Q we shall write P

�
===⇒

∗
Q.

If � = �1��2��3��� is an infinite sequence, we omit Q in P
�

===⇒
∗

Q. The output
behaviour of P is defined as o(P) = {� | P

�
===⇒

∗
}. If o(P) = o(Q) we shall

write P ∼o Q. Furthermore, if P
�

===⇒ Q and � is unimportant we simply write
P ===⇒∗ Q.

Definition 2.1.9. Let TL[[·]] a map from utcc processes to FLTL formulae given by:

TL[[skip]] = tt TL[[tell(�)]] = �
TL[[P

f
Q]] = TL[[P]] ∧ TL[[Q]] TL[[(λ ��; c) P]] = ∀��(� ⇒ TL[[P]])

TL[[(local �� ; �) P]] = ∃��(� ∧ TL[[P]]) TL[[next P]] = ◦TL[[P]]
TL[[unless � next P]] = � ∨ ◦TL[[P]] TL[[! P]] = 2TL[[P]]

We use the eventual modality 3F as an abbreviation of ¬⇤¬F .
The following theorem relates the operational view of processes with their logic

interpretation.

Theorem 2.1.10 (Logic correspondence [Olarte & Valencia 2008a]). Let TL[[·]] be
as in Definition 2.1.9, P a utcc process and � = �1��2��3��� an infinite sequence of

36 Chapter 2. Technical Background

constraints s.t. P
�

===⇒
∗
. For every constraint d, it holds that: TL[[P]] � 3� iff there

exists � ≥ 1 s.t. �� � �.

Recall that an observable transition P
(����)

===⇒ Q is obtained from a finite sequence
of internal transitions (rule RO). We notice that there exist processes that may produce
infinitely many internal transitions and as such, they cannot exhibit an observable
transition; an example is (λ � ; c(x)) tell(�(� + 1)). The utcc processes considered in
this paper are well-terminated, i.e., they never produce an infinite number of internal
transitions during a time unit. Notice also that in the Theorem 2.1.10 the process P
is assumed to be able to output a constraint �� for all time-unit � ≥ 1. Therefore, P
must be a well-terminated process.

2.1.3 Languages for Structured Communications

Here, we will mention the approach of the Global Calculus and the End Point Calculus

2.1.3.1 A session type language: HVK

We begin by introducing HVK, a language for structured communication proposed in
[Honda et al. 1998]. We assume the following conventions: names are ranged over by
�� �� � � � ; channels are ranged over by �� � �; variables are ranged over by �� �� � � � ;
constants (names, integers, booleans) are ranged over by �� ��� � � � ; expressions (in-
cluding constants) are ranged over by �� ��� � � � ; labels are ranged over by �� ��� � � � ;
process variables are ranged over by X � Y � � � � . Finally, �� ��� � � � denote names and
channels. We shall use �� to denote a sequence (tuple) of variables �1����� of length
� = |��|. Notation �� will be similarly applied to other syntactic entities. The sets of
free names/channels/variables/process variables of P , is defined in the standard way,
and are respectively denoted by fn(·), fc(·), fv(·), and fpv (·). Processes without free
variables or free channels are called programs.

Definition 2.1.11 (The HVK language [Honda et al. 1998]). Processes in HVK are
built from:

P,Q ::= request �(�) in P Session Request
| accept �(�) in P Session Acceptance
| � ![��]; P Data Sending
| �?(��) � P Data Reception
| � � �;P Label Selection
| � ⇤ {�1 : P1

f
· · ·

f
�� : P�} Label Branching

| throw � [� �]; P Channel Sending
| catch � (� �) in P Channel Reception
| if � then P else Q Conditional Statement
| P | Q Parallel Composition
| inact Inaction
| (ν�)P Hiding

2.1. Process Calculi 37

request �(�) in Q | accept �(�) in P −→� (ν�)(P | Q) (Link)

(� ![��]; P) | (�?(��) � Q) −→� P | Q[��/��] if � ↓ �� (Com)

� � ��; P | � ⇤
�

�1 : P1
n

· · ·
n

�� : P�
�

−→� P | P� (1 ≤ � ≤ �) (Label)

throw � [� �]; P | catch � (� �) in Q −→� P | Q (Pass)

if � then P else Q −→� P (� ↓ tt) (If1)

if � then P else Q −→� Q (� ↓ ff) (If2)

def D in (X [�� ��] | Q) −→� def D in (P [��/��] | Q) (� ↓ ��� X (����) = P ∈ D) (Def)

P −→� P � implies (ν�)P −→� (ν�)P � (Scop)

P −→� P � implies P | Q −→� P � | Q (Par)

Figure 2.3: Reduction Semantics of HVK (−→�)[Honda et al. 1998].

| def D in P Recursion
| X [�� ��] Process Variables

D ::= X1(�1�1) = P1 and · · · and X�(����) = P�
Declaration for Recursion

Operational Semantics of HVK. The operational semantics of HVK is given by the
reduction relation −→� which is the smallest relation on processes generated by the
rules in Figure 2.3.

Sessions The central idea in HVK is the notion of a session, i.e., a series of reciprocal
interactions in which two interacting parties first establish a private connection via
some public channel and then interact through it, possibly interleaved with other ses-
sions. More concretely, an interaction between two parties starts by the creation of a
fresh session identifier, that later will be used as a private channel where meaningful
interactions take place. Each session is fresh and unique, so each communication
activity will be clearly separated from other interactions; thus, sessions serve as an
abstraction unit for describing structured communication.

More precisely, sessions are initialised by a process of the form request �(�) in Q
| accept �(�) in P . In this case, there is a request, on name �, for the initiation of
a session and the generation of a fresh channel. This request is matched by an
accepting process on �, which generates a new channel � , thus allowing P and Q
to communicate each other. This is the intuition behind rule L���. Three kinds of

38 Chapter 2. Technical Background

atomic interactions are available in the language: sending (including name passing),
branching, and channel passing (also referred to as delegation). Those actions are
described by rules C��, L����, and P���, respectively. In the case of C��, the ex-
pression �� is sent on the port (session channel) � . Process �?(��) � Q then receives
such a data and executes Q[��/��], where �� is the result of evaluating the expression ��.
The case of P��� is similar but considering that in the constructs throw � [� �]; P and
catch � (� �) in Q, only session names can be transmitted. In the case of L����, the
process � � ��; P selects one label and then the corresponding process P� is executed.
The other rules are self-explanatory.

2.1.3.2 A global view of communications: The Global Calculus

The Global Calculus (GC) [Carbone et al. 2006, Carbone et al. 2007] originates from the
Web Service Choreography Description Language (WS-CDL) [Kavantzas et al. 2004],
a description language for web services developed by W3C. Terms in GC describe
choreographies as interactions between participants by means of message exchanges.
As in HVK, the description of such interactions is centred on the notion of a session. In
this section, we present the basic elements of GC and its reduction semantics. Terms
in GC describe how how global descriptions evolve, and relate to the type discipline
that describes the structured sequence of message exchanges between participants.

Syntax Let �� ��� � � � denote terms of the calculus, often called interactions or chore-
ographies; Terms describe a course of information exchange among two ore more
parties from a global viewpoint. The syntax of the Global Calculus is given below.

Definition 2.1.12. The syntax of the global calculus is given by the following gram-
mar:

� ::= 0 (inaction)
| A→B:�(�)� � (init)
| A→B : ��l� �� �� (com)
| �1 | �2 (par)
| if �@A then �1 else �2 (cond)
| X (recvar)
| µX � C (recursion)

Some conventions follow:

• A� B� C � � � � range over a collection � of participants;

• �� � �� � � � range over a collection � of linear channels (also called session chan-
nels). Session channels designate communication channels freshly generated
for each session. In service technologies, they are realised by sending a freshly
generated identifier as part of the message.

2.1. Process Calculi 39

• �� �� �� � � � range over a collection � of shared channels, also called session
initiating channels.

• �� �� � � � range over a collection V �� of variables; X � Y � � � � are process variables,
and �� ��� � � � labels for branching;

• finally �� ��� � � � range over unspecified arithmetic and other first-order expres-
sions.

We write �@A to mean that the expression � is evaluated using the variable related
to participant A in the store.
Intuitively, the term (inaction) denotes a system where no interactions take place.
(init) denotes a session initiation by A via B’s service channel �, with a fresh session
channel � and continuation �. Note that � is bound in �. (com) captures both the
selection of an operation l as well as in-session communication of the expression �
(at A’s) over a session channel � . In this case, � does not bind in � (the semantics
will treat � as a variable in the store of B). In (par), �1 | �2 denotes the parallel
product between �1 and �2. (cond) denotes the standard conditional operator where
�@A indicates that the expression � has to be evaluated in the store of participant
A. In (recursion), µX � � is the minimal fix point operation for recursion, where the
variable X of (recvar) is bound in �. The free and bound session channels and term
variables are defined in the usual way. The calculus is equipped with a standard
structural congruence ≡, defined as the minimal congruence relation on interactions
�, such that ≡ is a commutative monoid with respect to | and 0, it is closed under
alpha equivalence ≡α of terms, and it is closed under the recursion unfolding, i.e.,
µX �� ≡ �[µX ��/X].

Remark 2.1.13 (Differences with respect to [Carbone et al. 2007]). The syntax in
Definition 2.1.12 presents a simplified version of the global calculus without re-
striction, summation and local assignments. In its original presentation [Carbone
et al. 2006], restriction is used only during session initiation. We capture the re-
quirement of fresh identifiers by using the operational rules in Figure 2.4. Excluding
the lack of local assignment, we argue that our version of GC is, to some extent, as
expressive as the one originally reported in [Carbone et al. 2007].

Semantics Terms in the global calculus are considered modulo structural congruence
(≡) as the least congruence relation on � such that: (i) (�� 0� |) is a commutative
monoid, and (ii) � ≡α �� if � ≡α ��.

The semantics of the global calculus is defined as a reduction relation (σ� �) →
(σ �� ��) which says that the choreography � with state σ performs an interaction
and evolves into �� with state σ �. The state σ contains a set of variables labelled
by participants. As described in the previous subsection, a variable � located at
participant A is written as �@A. The same variable name labelled with different
participant names denotes different variables (hence σ (�@A) and σ (�@B) may differ).
The reduction relation → is defined as the least relation on state/choreography pairs
satisfying the rules in Figure 2.4.

40 Chapter 2. Technical Background

G − RInit
� is fresh

(σ� A→B:�(�)� �) −→ (σ� �[�/�])

G − RStruct
� ≡ ��� (σ� �) −→ (σ �� ��) �� ≡ ����

(σ� ���) −→ (σ �� ����)

G − RRec
(σ� �[µX ��/�]) −→ (σ �� ��)

(σ� µX ��) −→ (σ �� ��)

G − RPar
(σ� �1) −→ (σ �� ��

1)
(σ� �1 | �2) −→ (σ �� ��

1 | �2)

G − RIfT
σ (�@A) ⇓ tt

(σ� if �@A then �1 else �2) −→ (σ� �1)

G − RIfF
σ (�@A) ⇓ ff

(σ� if �@A then �1 else �2) −→ (σ� �2)

G − RCom
σ (�@A) ⇓ �

(σ� A→B : ��l� �� ��� �) −→ (σ [�@B �→ �]� �)

Figure 2.4: Reduction Semantics for the Global Calculus

Intuitively, transition (G-RI���) describes the evolution of a session initiation: after
A initiates a session with B on service channel �, A and B share the fresh channel �
locally. (G-RC��) describes the main interaction rule of the calculus: the expression
� is evaluated into � in the A-portion of the state σ and then assigned to the variable
� located at B resulting in the new state σ [�@B �→ �]. (G-RI�T) and (G-RI�F) show
the possible paths that a deterministic evolution of a choreography can produce.
(G-RP��) and (G-RS�����) behave as the standard rules for parallel product and
structural congruence, respectively.

Remark 2.1.14 (Global Parallel). Parallel composition in the global calculus dif-
fers from the notion of parallel found in standard concurrency models based on in-
put/output primitives [Milner 1999]. In the latter, a term P1 | P2 may allow interactions
between P1 and P2. However, in the global calculus, the parallel composition of two
choreographies �1 | �2 concerns two parts of the described system where interactions
may occur in �1 and �2 but never across the parallel operator | . This is because
an interaction A → B � � � abstracts from the actual end-point behaviour, i.e., how A
sends and B receives. In this model, dependencies between two choreographies can
be expressed by using variables in the state σ .

2.1.3.3 Structured Communications: The end-point Calculus

The end-point calculus (EPC) [Carbone et al. 2007] is the π-calculus [Milner 1999]
extended with sessions [Honda et al. 1998] as well as locations [Hennessy 2007] and

2.1. Process Calculi 41

store [Carbone et al. 2004]. Below, P� Q� � � � denote processes, M� N� � � � networks.

P ::= ! �(�̃)� P (initin) | ���̃�� P (initout)
| � � l���� P (selection) | � ⇤ Σ�l�(��)� P� (branch)
| P1 ⊕ P2 (plus) | P1 | P2 (par)
| µX � P (rec) | X (recvar)
| if � then P1 else P2 (cond)
| 0 (inact)

N ::= A[P]σ (participant)
| N1 | N2 (parnet)
| ε (inactnet)

(initin) and (initout) are dual operations for describing session initiation: ! �(�̃)� P
denotes a process offering a replicated (available in many copies) service � with
session channels �̃ while ���̃�� P denotes a process requesting a service � with
session channels �̃ . In both cases, P is the continuation. The next two processes
denote standard in-session communications (where �� in the second construct, the
branching input, is not bound in P�, and {��} are pairwise distinct). The term (����)
denotes internal choice. The rest is standard. Networks are parallel composition of
participants, where a participant has the shape A[P]σ , with A being the name of the
participant, P its behaviour, and σ its local state, now interpreted as a local function
from variables to values. We often omit σ when irrelevant. The free session channels,
free term variables and service channels are defined as usual over processes and
networks and, similarly to the global calculus, are denoted by ���(P/N)� � � (P/N)
and ��������(P/N) respectively. The syntax here presented differs from its origi-
nal presentation in the absence of the local assignments, conditional operators, and
restriction of networks and processes.

Semantics We give a semantics for EPC in terms of reductions of networks N → N �.
The reduction semantics follows the π-calculus and is defined by the rules given
in Figure 2.5. Note that symmetric rules are omitted, and rules for restriction and
variable assignment in the original version are omitted.

Rules in the reduction semantics for EPC treat processes and networks differently.
Rules (E-RI���) describe the interaction given by two end-points willing to establish
a new session. Here, ! �(�)�P denotes a replicated service. Reactions involving In-
session communication and label selection are described by(E-RC��), where � ⇓ �
describes the evaluation of expression and σ [� �→ �] the mapping variables � by
the value � in σ . Rules (E-RP��P) and (E-RP��N) describe reductions over parallel
composition of threads and parallel composition of networks. Rule (E-RS��) is the
standard rule for internal choice. Finally, (E-RS�����) relates structural congruent
networks.

Definition 2.1.15. The structural congruence over end-point terms (≡) is defined
as the least congruence on processes such that (≡� 0� |), (≡� 0� ⊕), (≡� ε� |) are

42 Chapter 2. Technical Background

E − RInit
�� �∈ fsc(P �) ∪ fsc(Q�) �̃ is fresh

A[! �(�̃)� P | P �]σ | B[���̃�� Q | Q�]σ � → (A[! �(�̃)� P | P | P �]σ | B[Q | Q�]σ �)[�̃/�̃]

E − RCom
σ � � ⇓ � � ∈ I

A[� ⇤ Σ�l�(��)� P� | P �]σ | B[� � ������ Q | Q�]σ � → A[P� | P �]σ [�� �→�] | B[Q | Q�]σ �

E − RIfT
σ � � ⇓ tt

A[if � then P1 else P2 | P �]σ → A[P1 | P �]σ

E − RParN
M → M �

M|N → M �|N

E − RIfF
σ � � ⇓ ff

A[if � then P1 else P2 | P �]σ → A[P2 | P �]σ

E − RSum
� ∈ {1� 2}

A[P1 ⊕ P2|R]σ → A[P�|R]σ

E − RRec
A[P [µX �P/X] | Q]σ | N → N �

A[µX �P | Q]σ | N → N �

E − RStruct
M ≡ M � M � → N � N � ≡ N

M → N

E − RParP
A[P1 | R]σ → A[P �

1 | R]σ �

A[P1 | P2 | R]σ → A[P �
1 | P2 | R]σ �

Figure 2.5: Reduction Relation for the End-Point Calculus

commutative monoids, and (i) P ≡ Q if P ≡α Q, (ii) A[P]σ ≡ A[Q]σ if P ≡ Q.

2.1.4 The Conversation Calculus

Here we briefly introduce the Conversation Calculus (CC, in the following). Further
details can be found at [Vieira et al. 2008, Vieira 2010].

The CC corresponds to a π-calculus with labeled communication and extended
with conversation contexts. A conversation context can be seen as a medium in which
interactions take place. It is similar to sessions in service-oriented calculi (see [Honda
et al. 1998]) in the sense that every conversation context has an unique identifier (e.g.:
an URI). Interactions in CC may be intuitively seen as communications in a pool of
messages, where the pool is divided in areas identified by conversation contexts.
Multiple participants can access many conversation contexts concurrently, provided
they can get hold of the name identifying the context. Moreover, conversations can
be nested multiple times (for instance, a private chat room within a multi-user chat
application).

2.1. Process Calculi 43

Definition 2.1.16 (CC Syntax). Let � be an infinite set of names. Also, let �, �, and
χ be infinite sets of labels, variables, and recursion variables, respectively. Using �
to range over ↑ and ↓, the set of actions α and processes P is given below:

α ::= l�!(��) | l�?(��) | this(�) P� Q ::= �J [P] |
�

�∈I
α�� P� | P | Q | (ν�) P | µX � P | X

Above, �� and �� denote tuples of names and variables in � and �, respectively.
Actions can be an output l�!(��) or an input l�?(��), as in the π-calculus, with l ∈ �
in both cases. The message direction ↓ (read “here”) decrees that the action it is
associated to should take place in the current conversation context, while ↑ (read
“up”) decrees that the action should take place in the enclosing one. We often omit
the “here” direction, and write l?(�)�P and l!(��)�P rather than l↓?(�)�P and l↓!(��)�P .
The context-aware prefix this(�) binds the name of the enclosing conversation con-
text to � . The syntax of processes includes the conversation context �J [P], where
� ∈ � . We follow the standard π-calculus interpretation for guarded choice, par-
allelism, restriction, and recursion (for which we assume X ∈ χ). As usual, given�

�∈I α�� P�, we write 0 when |I| = 0, and α1� P1 + α2� P2 when |I| = 2. We assume
the usual definitions of free/bound variables and free/bound names for a process P ,
noted � � (P)� �� (P) and ��(P)� ��(P), respectively. The set of names of a process is
defined as �(P) = ��(P) ∪ ��(P). Finally, notice that labels in � are not subject to
restriction or binding.

The semantics of the CC is given as a labeled transition system (LTS). As cus-
tomary, a transition P

λ
−−→ P � represents the evolution from P to P � through action

λ. We write P
λ

−−→ if P
λ

−−→ P �, for some P �. We define P −−→ P � as P
τ

−−→ P �.
We use P −−→∗ P � to denote the transitive closure of P −−→ P �, and write P λ⇒ P �

when P −−→∗ λ
−−→−−→∗ P �.

Definition 2.1.17. Transition labels λ are defined in terms of actions σ , as defined
by the following grammar:

σ ::= τ | l�?(��) | l�!(��) | this λ ::= σ | � σ | (ν�) λ

Action τ denotes internal communication, while l�?(��) and l�!(��) represent an
input and output to the environment, respectively. Action this represents a conver-
sation identity access. A transition label λ can be either the (unlocated) action σ ,
an action σ located at conversation � (written � σ), or a transition label in which �
is bound with scope λ. This is the case of bounded output actions. ���(λ) denotes
the names produced by a transition, so ���(λ) = � if λ = l�!(�) or λ = �l�!(�) and
� �= �. A transition label λ denoting communication, such as l�?(��) or l�!(��) is subject
to duality λ. We write l�?(��) = l�!(��) and l�!(��) = {l�?(��) | �� ∈ �}.

Figure 2.6 presents the LTS. The rules in the upper part of Fig. 2.6 follow the
transition rules for a π-calculus with recursion. For instance, rule (CC-O���) cor-
responds to the usual scope extrusion rule in the π-calculus. The rest of the rules
are specific to the CC. Rule (CC-T���) captures the name of an enclosing conversa-
tion context. Rule (CC-L��L) locates an action to a particular conversation context,

44 Chapter 2. Technical Background

(CC-I�)

l�?(��)� P
l�?(��)
−−→ P [��/��]

(CC-O��)

l�!(��)� P
l�!(��)

−−→ P

(CC-T���)

this(�)� P
� this
−−→ P [�/�]

(CC-O���)
P

λ
−−→ Q � ∈ ���(λ)

(ν�) P
(ν�) λ
−−→ Q

(CC-R��)
P

λ
−−→ Q � �∈ �(λ)

(ν�) P
(ν�) λ
−−→ (ν�) Q

(CC-S��)
α� � P�

λ
−−→ P �

� � ∈ I
�

�∈I α�� P�
λ

−−→ P �
�

(CC-P���)
P

λ
−−→ P � ��(λ)#��(Q)

P | Q
λ

−−→ P � | Q

(CC-C����)

P
λ

−−→ P � Q
λ

−−→ Q�

P | Q
τ

−−→ P � | Q�

(CC-R��)
P [X/µX � P]

λ
−−→ Q

µX � P
λ

−−→ Q

(CC-C�����)

P
(ν��) λ
−−→ P � Q

λ
−−→ Q� ��#��(Q)

P | Q
τ

−−→ (ν��) (P � | Q�)

(CC-L��L)

P
λ↓

−−→ P �

�J [P]
� λ↓

−−→ �J [P �]

(CC-H���L)

P
λ↑

−−→ P �

�J [P]
λ↓

−−→ �J [P �]

(CC-T���C�����)

P
σ

−−→ P � Q
(ν�) � σ
−−→ Q�

P | Q
� this
−−→ (ν�) (P � | Q�)

(CC-T���C����)
P

σ
−−→ P � Q

� σ
−−→ Q�

P | Q
� this
−−→ P � | Q�

(CC-T���L)

P
� λ↓

−−→ P �

�J [P]
� λ↓

−−→ �J [P �]

(CC-T��L)
P

τ
−−→ P �

�J [P]
τ

−−→ �J [P �]

(CC-T���L��L)
P

� this
−−→ P �

�J [P]
τ

−−→ �J [P �]

Figure 2.6: An LTS for CC. Rules with labels ending with “1” have a symmetric
counterpart (with label ending with “2”) which is elided.

and rule (CC-H���L) changes the direction of an action occurring inside a context.
Rules (CC-T���C�����) and (CC-T���C����) are located versions of (CC-C����) and
(CC-C���), respectively. Rule (CC-T���L��L) hides an action occurring inside a con-
versation context. Rules (CC-T���L) and (CC-T��L) formalise how actions change
when they “cross” a conversation context.

2.2 Verification

2.2.1 Linear Temporal Logic

Temporal logics were introduced into computer science by Pnueli [Pnueli 1977] and
thereafter proven to be a good basis for specification as well as for automated rea-

2.2. Verification 45

soning about concurrent, reactive systems.
We recall the syntax and semantics of FLTL. We refer the reader to [Manna &

Pnueli 1992] for further details.
Recall that a signature Σ is a set of constant, function and predicate symbols. A

first-order language � is built from the symbols in Σ, a denumerable set of variables
�� �� � � � � and the logic symbols ¬� ∧� ∨� ⇒� ⇔� ∃� ∀� tt and ff

Definition 2.2.1 (FLTL Syntax). Given a first-order language �, FLTL formulae is
given by the syntax:

F � G� � � � ::=c | F ∧ G | F ∨ G | ¬F | ∃�F | � F | ◦ F | ⇤F �

Where c is a predicate symbol in �.

As done in Model Theory, the non-logical symbols of � (predicate, function and
constant symbols) are given meaning in an underlying �-structure, or �-model,
M(�) = (� ; D). This means, they are interpreted via � as relations over a domain �
of the corresponding arity.

States and Interpretations: A state � is a mapping assigning to each variable � ∈ �
a value �[�] in � . This interpretation is extended to �-expressions in the usual way,
for example, �[� (�)] = �(�)(�[�]). We write � |=M(L) c if and only if � is true with respect
to � in �(�).

The state � is said to be an �-variant of �� iff ��[�] = �[�] for each � �= � . This is,
� and �� are the same except possible for the value of the variable � .

We shall use σ� σ �� � � � to range over infinite sequences of states. We say that σ
is an �-variant of σ � iff for each � ≥ 0, σ (�) is an x-variant of σ �(�).

Definition 2.2.2 (FLTL Semantics). We say that σ satisfies F in a �-structure �(�),
written σ |=�(�) F , iff �σ� 0� |=�(�) F following the assertions in Figure 2.7.

We say that F is valid in �(�) if and only if for all σ , σ |=�(�) F . F is said to
be valid if F is valid for every model �(�).

Ensuring specifications have no communication errors.

2.2.2 Session Types for the Global Calculus

The Global Calculus comes accompanied with a type discipline that ensures the
proper control flow among interactions. It is built as a generalisation of session types
[Honda et al. 1998] for global interactions, first presented in [Carbone et al. 2007].
Here we informally describe their use through examples, and direct to their original
presentation for a more formal view.

Session types in GC are used to structure sequence of message exchanges in a
session. Their syntax is as follows:

θ = bool | int | � � �
α = � ⇤ Σ�li(θ�)� α� | � � Σ�li(θ�)� α� | α1 | α2 | end | µt� α | t (2.1)

46 Chapter 2. Technical Background

�σ� �� |=�(�) tt
�σ� �� �|=�(�) ff
�σ� �� |=�(�) c

def
= σ (�) |=�(�) c

�σ� �� |=�(�) ¬F
def
= �σ� �� �|=�(�) F

�σ� �� |=�(�) F ∧ G
def
= �σ� �� |=�(�) F and �σ� �� |=�(�) G

�σ� �� |=�(�) �F
def
= � > 0 and �σ� � − 1� |=�(�) F

�σ� �� |=�(�) ◦F
def
= �σ� � + 1� |=�(�) F

�σ� �� |=�(�) ∃�� F
def
= for some x-variant σ � of σ� �σ �� �� |=�(�) F

�σ� �� |=�(�) ⇤F
def
= ∀� ≥ �� �σ� �� |=�(�) F

Figure 2.7: FLTL semantics

Here, θ range over standard data types bool� string� int� � � � and α describe session
types. We describe the forms of α .

• �⇤Σ�li(θ�)� α� and ��Σ�li(θ�)� α� are branching-input and selection-output types,
they describe the provision of processes with labelled inputs (or a labelled
output, respectively) followed by the continuation α�.

• The type α1 | α2 is a parallel composition of session types α1 and α2.

• The type end indicates session termination and is often omitted.

• µt� α indicates a recursive type with t as a type variable. µt� α binds the free
occurrences of t in α . We take an equi-recursive view on types, not distinguish-
ing between µt� α and its unfolding α [µt� α/t].

Typing judgments in GC have the form Γ � � � ∆, where Γ is a type environment
describing services, and ∆ the type environment describing sessions. Typically, Γ
contains a set of type assignments of the form �@A : α , which say that a service �
located at participant A may be invoked and run a session according to type α . ∆
contains type assignments of the form � [A� B] : α which say that a session channel �
identifies a session between participants A and B and has session type α when seen
from the viewpoint of A. There is no particular reason why one has to choose a strict
direction when considering interactions, and one may as well consider � [A� B] : α
from the viewpoint of B. Consider an online booking scenario (as the one in Equation
5.2.6). One possible type assignment for ∆ is:

�1� �2[C���� AC] : �1 ⇤ booking(string)� �2 � offer(int)� �1 ⇤ accept(string)� end

Describing that �1 and �2 are names corresponding to the same session be-
tween participants C��� and AC , and corresponds to the session type α = �1 ⇤

2.2. Verification 47

booking(string)� �2 � offer(int)� �1 ⇤ accept(string)� end when seeing it from the point
of view of C��� .

We provide some examples on the typing rules for the GC. The full set typing rules
are similar to the original ones attached in Appendix 5.B1. First, we comment the rule
(G-TI���), which types the establishment of a new session between two participants.

G − TInit
Γ� �@B : (��)α � � � ∆ · �� [B� A] : α A �= B

Γ� �@B : (��)α � A→B:�(��)� � � ∆

Here, the typing rule dictates some requirements on the structure of the chore-
ography: first, the initialisation of a session between participants in A→B:�(��)� �
requires that sessions names in �� correspond to a session type in the premise. More-
over, it checks that the service channel �@B : (��)α is declared in the service typing
Γ. The rule (G-TC��) describes communication between participants:

G − TCom
Γ � � � ∆ · �� [A� B] : α� Γ � �@A : θ� Γ � �@B : θ� � ∈ �� A �= B � ∈ J

Γ � A→B : ��li� �� ��� � � ∆ · �� [A� B] : � ⇤ Σ�∈J li(θ�)� α�

Here, the interaction � = A→B : ��li� �� ��� �� will be typable with a session type
∆ · �� [A� B] : � ⇤ Σ�∈J li(θ�)� α� provided that: 1) The evaluation of the expression � at
A and its recipient variable � at B correspond to the same value type, 2) the com-
munication is performed between different participants A and B, 3) the continuation
� contains a session type between A and B such that its session names in �� contain
� , and 4) the branch selected in � is a valid one. In the conclusion, we use an output
type � ⇤ Σ�∈J li(θ�)� α� describing the emision of value from the point of view of A. It
is clear, that we could use a complementary rule to type the input of values from the
point of view of B.

Assumption 2.2.3 (Well-typedness). Henceforth we only consider well-typed terms
for the Global calculus, unless otherwise specified.

2.2.3 Session Types for the End-Point Calculus

Session types for the EPC builds from the syntax of session types in equation 2.1.
Basically, the type discipline of the EPC stems from the Global Calculus, but assigns
session types to every single participant instead of the whole choreography. In this
way, the session typing in the EPC describes the end-point behaviour. An end-point
typing judgment contains judgements for processes in the form Γ �A P � ∆ (where
P is typed as a behaviour for A) and judgements for networks Γ � N � ∆. In both,

1Pay attention that the session types used in Appendix 5.B bear some differences from the ones
exemplified here. Note there that branching inputs and selections are replaced by corresponding
separate input-output types and branching-selection types.

48 Chapter 2. Technical Background

mappings Γ and ∆ are service and session typings respectively. Here, Γ and ∆ are
defined as:

Γ ::= ∅ | Γ� �@A : (�̃)α | Γ� �@A : (�̃)α | Γ� �@A :θ | Γ� X :∆
∆ ::= ∅ | ∆� �̃@A :α | ∆� �̃ :⊥

Above, �@A : (�̃)α indicates the service located at A which is invoked with fresh
session channels �̃ and offers service of the shape α , while �@A : (�̃)α indicates
the type abstraction for the dual invocation, i.e. a client of an A’s service which
invokes with fresh channels �̃ and engages in interactions abstracted as α . Note @A
indicates the location of a service in both forms. As before, �̃ should be a vector of
pairwise distinct session channels which should cover all session channels in α , and
α does not contain free type variables. (�̃) binds occurrences of session channels in
(�̃) in α , which induces the standard alpha-equality. A central concept in this type
discipline is the notion of duality for session types, which is defined as:

(�̃)α@A =?(�̃)α@A ?(�̃)α@A =(�̃)α@A

where the notion of duality α of α remains the same.
Here we only comment some examples on the typing rules, and the full type

system can be found in Appendix 5.D2. Similarly as with the type system for the
Global Calculus, we will focus the examples in session initiation and communication.
The two rules (E-TI���.I�),(E-TI���.O��) describe session initiation primitives:

E − TInit�In
Γ �A P � �̃@A : α � �∈ ���(Γ) ������(Γ)

Γ� ! �(�̃)α@A �A!�(�̃)� P � ∅

E − TInit�Out
Γ� � : (�̃)α@B �A P � ∆ · �̃@A : α

Γ� � : (�̃)α@B �A ���̃�P � ∆
In (E-TI���.I�), the premise only allows for typings of session channels involved in

the session initialisation of service �, that is, only the channels in �̃ . This linearity
condition blocks free session channels from occurring during a replicated input. The
condition � �∈ ���(Γ) prevents from self-calls and ensures that the type assignment
occurs at the side of the client. Requirements for the complementary typing rule (E-
TI���.I�) are analogous, although the linearity condition is removed. Communication
rules are standard for session types, for instance, the rule (E.TS��O��) is used to type
message outputs:

E�TSelOut
� ∈ I Γ � � : θ� Γ �A P � ∆ · �̃@A : α�

Γ �A � � lj���� P � ∆ · �̃@A : � � Σ�∈I ��(θ�)� α�

Here, process � � lj���� P types after evaluation that the typing of � corresponds
to a correct value type and that the continuation P behaves as established by the
session type in ∆ · �̃@A : α . Analogous requirements hold for typing the input process
� ⇤ Σ�l�(��)� P�.

2The same considerations for global types apply also for end-point types.

2.2. Verification 49

2.2.4 End Point Projection

The relation between global and local views at the specification of communication
protocols is given at the level of types. The central idea is that one can project
the behaviour (type) of a global specification given in terms of choreography into
a parallel composition of the behaviours of end-points. The mapping is far from
trivial, and need to preserve causal relations between messages and threads, namely
connectedness, well-threadedness and coherence. The next subsection presents a
recap from the work at [Carbone et al. 2007]. In order to give the formal definition
of end point projection, we first annotate global specifications with identifiers for
threads.

An annotated interaction, is an annotation of a choreography with �’s denoting
each thread in play. Annotated interactions are written �� ��� ���, and they are given
by the following grammar:

� ::= A�1→B�2 :�(�)� � | �1|��2

| A�1→B�2 : ��l� �� ��� � | µ�XA� �
| if �@A� then �1 else �2 | XA

�

| 0

where each � is a natural number. We call �� ��� · · · occurring in an annotated interac-
tion, threads. Each � can be regarded as an abstract syntax built from a constructor
in its root (either a prefix or a parallel product), if the tree is originated from a single
thread, or a pair of threads if the interaction involves an interaction (session initia-
tion, message communication or selection/branching). The following is the consistent
annotation of online booking example referred before3.

Cust1→AC2:ob(�1� �2)� Cust1→AC2 : �1�booking� Paris� ��� (OB�)
AC2→Cust1 : �2�offer,$ 100.00� ��� Cust1→AC2 : �1�accept� cardNr.12345� ��� 0

Which, although simple, could be more complicated in the case there are more
than one session initiation involved in the choreography. Take for instance the case
where Cust→AC:ob(�1� �2) is decomposed by the sequence of processes Cust→AC:ob(�1)�
AC→Cust:ob(�2) We can have different annotations for Cust and AC. The sequence:
Cust1→AC2:ob(�1)� AC2→Cust3:ob(�2) generates a valid annotation as it places each
session initiation between the customer and the AC in different threads, any other
annotation would be invalid.

A choreography � is connected, if the interactions within � describe strongly con-
nected sequences of interactions where active/passive participants (the ones origi-
nating/receivers of an interaction). Informally, for each participant A in the set of

3The data types for the messages in each of the interactions are obvious, therefore they will not be
described.

50 Chapter 2. Technical Background

participants of a choreography �, a communication activity originated by A should
have been immediately by a communication activity where A had acted as a receiver,
or been preceded by a self-contained action (evaluation of expressions, for instance).

Consistent annotations In order to provide meaningful projections between chore-
ographies and its end-points, we need to define a notion of “consistent annotation”,
that is, an annotation � such that it respects causality conditions, and can be re-
alised by a projection. Such conditions are: 1) Causal Consistency: if a participant
annotated with � is passive in an interaction (a receiver), then the subsequent inter-
action will be marked with � as well, or it will be a self-contained action, 2) Session
Consistency: Two actions in � identified by the same session name are annotated
with the same thread, and 3) Distinctness Condition: The input of session initiation
is always given a fresh thread.

The Well-threadedness condition ensures global specifications are free from un-
realisable dependencies among actions. We say � is well-threaded if it is connected
and it has a consistent annotation.

Mergeability Annotations in a choreography allow for the extraction of threads di-
rectly from the global behaviour. As threads are sequences of actions to be executed
at each end-point, we need to ensure that threads generated from choreographical
annotations are meaningful, in the sense that they project only to the required end-
points, and threads describing the behaviour of the same end point are encapsulated
(merged) on a single service description. Mergeability, denoted by ��, is the smallest
equivalence over typed terms up to ≡, closed under all typed contexts and

M − In
∀� ∈ (I ∩ J)�(P� �� Q� ∧ �� = ��) ∀� ∈ I\J�∀� ∈ J\I�l� �= l�

� ⇤ Σ�l�(��)� P� �� � ⇤ Σ� l� (��)� Q�

M − Zero
���(P) = 0

P �� 0

When P �� Q, we say that P and Q are mergeable.
Above, a context is any end-point calculus process with some holes. (M-I�) is for

branching and says that we can allow differences in branches which do not overlap,
but we do demand each pair of behaviours with the same operation to be identical.

The operation P � Q allows for merging typed processes as long as they are
mergeable according to the rules above. P � Q is a partial commutative binary
operator on typed processes which is well-defined iff P �� Q. We see an example of
the merging rules, and the full set can be consulted in Appendix 5.E. The merging of
two branching processes � ⇤ Σ�∈I li(��)� P� and � ⇤ Σ�∈J li(��)� P� is given as:

� ⇤ Σ�∈I li(��)� P� � � ⇤ Σ�∈J li(��)� P�
def
= � ⇤

⎛

⎝
Σ�∈I∩J li(��)� (P� � Q�)
+Σ�∈I\J li(��)� P�
+Σ�∈J\I li(��)� Q�

⎞

⎠

2.2. Verification 51

That is, the resulting merge groups in a single session branching all the options
coming from multiple branches that have the same session key.

Given a consistent annotation, we can project each of its threads onto an end-point
process. The thread projection TP(�� �) is a partial operation that uses the merge
operator, some of the rules are given below (the full set are included in Appendix
5.F):

TP(A�1→B�2 :�(�̃)� �� �)
def
=

⎧
⎨

⎩

���̃�� TP(�� �1) if � = �1
! �(�̃)� TP(�� �2) if � = �2
TP(�� �) otherwise

TP(A�1→B�2 : ��l� �� ��� �� �)
def
=

⎧
⎨

⎩

� � l���� TP(A� �) if � = �1
� ⇤ l(�)� TP(A� �) if � = �2
TP(�� �) otherwise

TP(if �@A�� then �1 else �2 � �)
def
=

�
if � then TP(�1� ��) else TP(�2� ��) if � = ��

TP(�1� �) � TP(�2� �) otherwise

Definition 2.2.4 (Coherent Interactions). Given a well-threaded, consistently anno-
tated interaction �, we say that � is coherent if the following two conditions hold:

1. For each thread � in �, T P(�� �) is well-defined.

2. For each pair of threads �1� �2 in � with �1 ≡A �2, we have T P(A� �1) �� T P(�� �2).

Below, ����(�) denotes the set of participants names occurring in �. Recall also
being coherent entails being well-typed, connected and well-threaded.

Definition 2.2.5 (End-Point Projection). Let � be a coherent interaction, and � be
a consistent annotation of �. Then the end point projection of � under a state σ ,
denoted EPP(�� σ), is given as the following network.

EPP(�� σ)
def
= ΠA∈����(�) A[Π[�]

�

��∈[�]
TP(�� ��)]σ@A

The mapping given above is defined after choosing a specific annotation of an
interaction. The following result shows the map in fact does not depend on a specific
(consistent) annotation chosen, as far as a global description has no incomplete
threads, i.e. it has no free session channels (which is what programmers/designers
usually produce).

Theorem 2.2.6 (Soundness and Completeness of End-point Projections[Carbone
et al. 2007]). Assume � is well-typed, strongly connected, well-threaded and coher-
ent. Assume further Γ � � � ∆ and Γ � σ . Then the following properties hold:

• (soundness) if EPP(�� σ) −−→ N then there exists �� such that (σ� �) −−→
(σ �� ��) such that EPP(��� σ �) ≺ ≡��� N .

52 Chapter 2. Technical Background

• (completeness) If (σ� �) −−→ (σ �� ��) then there exist N such that EPP(�� σ) −−→
N and EPP(��� σ �) ≺ N .

• (soundness with action labels) if EPP(�� σ)
m

−−→ N then there exists �� such
that (σ� �)

�
−−→ (σ �� ��) such that EPP(��� σ �) ≺ ≡��� N .

• (completeness with action labels) If (σ� �)
�

−−→ (σ �� ��) then there exist N such
that EPP(�� σ)

m
−−→ N and EPP(��� σ �) ≺ N .

Where ≡��� denotes equality induced by the unfolding of process recursion. The
assymetric relation P ≺ Q indicates that P is the result of cutting off “unnecessary
branches” of Q, in the light of P’s own typing, is formally defined as follows:

Definition 2.2.7 (Pruning). Let Γ �A P ⇤ ∆ for Γ and ∆ minimal and Γ� Γ� �A Q ⇤ ∆.
If further we have Q ≡ Q0 | !R where Γ � Q0 ⇤ ∆, Γ� �A R and P � Q0, then we can
write: Γ �A P ≺ Q ∆ or P ≺ Q for short, and say P prunes Q under Γ; ∆. ≺ is
extended to networks accordingly.

2.3 Behavioural Equivalences between Processes

One central concern of concurrency theory is to determine whether two processes
exhibit the same behaviour; to this end, many notions of behavioural equivalence
have been investigated [van Glabbeek 1990]. In this section, we will recall some of
the behavioural equivalences used in this thesis.

2.3.1 Simulations & Bisimulations

The following definitions are presented with respect to the definition of transition
systems given in Definition 2.1.1.

Definition 2.3.1 (Simulation [Milner 1999]). Two transition systems T� = �S�� I�� −→�
� Act� for � ∈ {0� 1} are similar if there exists a relation � ⊆ S0 × S1 such that
∀� ∈ I��∃�� ∈ I1−������ and for all ��

0, �0
�

−−→0 ��
0 implies �1

�
−−→1 ��

1 and ��
0���

1.

Definition 2.3.2 (Bisimulation [Milner 1999]). Two transition systems T� = �S�� I�� −→�
� Act� for � ∈ {0� 1} are similar if there exists a relation � ⊆ S0 × S1 such that both
� and its converse �−1 are simulations. We say that T0 and T1 are bisimilar, written
T0 ∼ T1 if there exists a bisimulation � such that T0�T1.

A coalgebraic approach to supervisory control introduced the notion of partial
bisimulation as a behavioural relation suitable for controllability [Rutten 2000]. In
principle, it suggest that controllable event should be simulated, whereas uncontrol-
lable events should be bisimulated, hence the term partial bisimulation.

2.3. Behavioural Equivalences between Processes 53

Definition 2.3.3 (Partial Bisimulation [Rutten 2000]). Two transition systems T� =
�S�� I�� −→�� Act� for � ∈ {0� 1} are partially bisimilar (with respect to the bisimulation
set B), written T0 �B T1, if there exists a relation � ⊆ S0×S1 such that, ∀� ∈ I��∃�� ∈
I1−���� �� and whenever �0� �1, we have that

1. For all ��
0, �0

�
−−→0 ��

0 implies �1
�

−−→1 ��
1 and ��

0� ��
1;

2. For all ��
1 and � ∈ B, �1

�
−−→1 ��

1 implies �0
�

−−→0 ��
0 and ��

0� ��
1.

A recent proposal for a simulation-based behavioural relation over LTS has been
put forward in [Fábregas et al. 2010]. The covariant-contravariant simulation is based
on considering a partition of their set of actions into three sets: a collection of
covariant actions (being in control of the specification), a collection of contravariant
actions (being under the control of the implementation–or the environment–) and a
collection of bivariant actions (these ones treating the classic notion of bisimulation).

Definition 2.3.4 (covariant-contravariant simulation [Fábregas et al. 2010]). As-
sume a partition {B�� B�� B��} of the set of actions, i.e. Act = B� � B� � B��. Two
transition systems T� = (S�� I�� −→�� Act) for � ∈ {0� 1} with such partioned action
set are (B�� B�)−similar (or just a covariant-contravariant similar) if there exists a
relation � ⊆ S0 × S1 such that, ∀� ∈ I��∃�� ∈ I1−������ and whenever �0��1, we have
that

• for all � ∈ B� ∪ B�� and all �0
�

−−→ ��
0 there exists �1

�
−−→ ��

1 with ��
0���

1.

• for all � ∈ B� ∪ B�� and all �1
�

−−→ ��
1 there exists �0

�
−−→ ��

0 with ��
0���

1.

2.3.2 Testing Theories

A different approach, proposed in [De Nicola & Hennessy 1984], is based on tests.
Intuitively two processes are testing equivalent, � ≈���� �, relative to a set of tests
T if � and � pass exactly the same set of tests from T . Much here depends on the
nature of tests, how they are applied and how they succeed.

Informally processes are conceived as completely independent entities who may
or may not react to testing requests; more importantly the application of a test to
a process simply consists of a run to completion of the process in a test harness.
Because processes are in general nondeterministic, formally this leads to two testing
based equivalences, � ≈��� � and � ≈���� �; the latter is determined by the set of
tests a process guarantees to pass, written � must satisfy � , while the former by those
it is possible to pass, � may satisfy � . Notably, must equivalences have been used as
foundational theories to analyse the compliance between web service specifications,
as presented in [Laneve & Padovani 2007], and endow a logical characterisation based
on HML logic [Cerone & Hennessy 2010].

Formally speaking, a test is a state from a LTS T� = �S� Actτ ∪ {ω}�
�

−−→� where
ω is an action not contained in Act and τ does not occur in Act.

54 Chapter 2. Technical Background

Given a LTS of processes T� = �S� Actτ �
�

−−→�, an experiment consists of a pair
� | � from the product LTS (T� | T�). We refer to a maximal path � | �

τ
−−→ �1 | �1

τ
−−→

� � �
τ

−−→ �� | ��
τ

−−→ � � � as a computation of � | � . It may be finite or infinite; it
is successful if there exists some � ≥ 0 such that ��

ω
−−→. As only τ-actions can

be performed in an experiment, we will omit the symbol τ in computations and in
computation prefixes. Successful computations lead to the definition of two well
known testing relations, [De Nicola & Hennessy 1984]:

Definition 2.3.5 (May Satisfy, Must Satisfy). Assuming a LTS of processes and a
LTS of tests, let � and � be a state and a test from such LTSs, respectively. We say

1. � may satisfy � if there exists a successful computation for the experiment � | � .

2. � must satisfy � if each computation of the experiment � | � is successful.

Chapter 3

A Unified Framework for
Declarative Structured

Communications

Abstract: We present a unified framework for the declarative analysis of structured
communications. By relying on a (timed) concurrent constraint programming lan-
guage, we show that in addition to the usual operational techniques from process
calculi, the analysis of structured communications can elegantly exploit logic-based
reasoning techniques. We introduce a concurrent constraint a declarative interpreta-
tion of the language for structured communications proposed by Honda, Vasconcelos,
and Kubo. Distinguishing features of our approach are: the possibility of including
partial information (constraints) in the session model; the use of explicit time for
reasoning about session duration and expiration; a tight correspondence with logic,
which formally relates session execution and linear-time temporal logic formulas. We
provide compelling examples of our approach, as well as comment on directions of
current and future work.

Contents
3.1 Introduction . 56

3.1.1 Motivation. 56
3.1.2 This Work. 57
3.1.3 A Compelling Example. 57
3.1.4 Related Work. 59

3.2 Preliminaries . 59
3.2.1 A Language for Structured Communication 59
3.2.2 Timed Concurrent Constraint Programming 61

3.3 A Declarative Interpretation for Structured Communications 66
3.3.1 Operational Correspondence. 67

3.4 A Timed Extension of HVK . 72
3.4.1 Case Study: Electronic booking . 73
3.4.2 Exploiting the Logic Correspondence 75

3.5 Concluding Remarks . 76

56 Chapter 3. A Unified Framework for Declarative Structured Communications

3.1 Introduction

3.1.1 Motivation.

As recently pointed out by the ICT theme of EU Seventh Framework Programme (FP7),
the need of trustworthy and pervasive services infrastructure is considered one of the
three mayor challenges in ICT for the next ten years. The “future internet" proposes
challenges in terms of scalability, mobility, flexibility, security, trust and robustness
to a current Internet architecture of more than 30 years old. A vast landscape of
application and ever-changing requirements and environments must be supported,
and new ways of interaction must be devised, coping with safety and reliability in
their coordination methods. Service Oriented Computing (SOC for short) has emerged
as one of the driving forces

From the viewpoint of reasoning techniques, two main trends in modelling in Ser-
vice Oriented Computing (SOC) can be singled out. On the one hand, an operational
approach focuses on how process interactions can lead to correct configurations.
Typical representatives of this approach are based on process calculi and Petri nets
(see, e.g., [van der Aalst 1998, Boreale et al. 2006, Lanese et al. 2007, Lapadula
et al. 2007a]), and count with behavioural equivalences and type disciplines as main
analytic tools. On the other hand, in a declarative approach the focus is on the set
of conditions components should fulfil in order to be considered correct, rather than
on the complete specification of the control flows within process activities (see, e.g.,
[van der Aalst & Pesic 2006, Pesic & van der Aalst 2006]). Even if these two trends
address similar concerns, we find that they have evolved rather independently from
each other.

The quest for a unified approach in which operational and declarative techniques
can harmoniously converge is therefore a legitimate research direction. In this paper
we shall argue that Concurrent Constraint Programming (CCP) [Saraswat 1993] can
serve as a foundation for such an approach. Indeed, the unified framework for opera-
tional and logic techniques that CCP provides can be fruitfully exploited for analysis
in SOC, possibly in conjunction with other techniques such as type systems. Below
we briefly introduce the CCP model and then elaborate on how it can shed light on
a particular issue: the analysis of structured communications.

CCP [Saraswat 1993] is a well-established model for concurrency where processes
interact with each other by telling and asking for pieces of information (constraints)
in a shared medium, the store. While the former operation simply adds a given
constraint to the store (thus making it available for other processes), the latter al-
lows for rich, parameterizable forms of process synchronisation. Interaction is thus
inherently asynchronous, and can be related to a broadcast-like communication dis-
cipline, as opposed to the point-to-point discipline enforced by formalisms such as
the π-calculus [Sangiorgi & Walker 2001]. In CCP, the information in the store grows
monotonically, as constraints cannot be removed. This condition is relaxed in timed
extensions of CCP (e.g., [Saraswat et al. 1994, Nielsen et al. 2002]), where processes
evolve along a series of discrete time units. Although each unit contains its own

3.1. Introduction 57

store, information is not automatically transferred from one unit to another. In this
paper we shall adopt a CCP process language that is timed in this sense.

In addition to the traditional operational view of process calculi, CCP enjoys
a declarative nature that distinguishes it from other models of concurrency: CCP
programs can be seen, at the same time, as computing agents and as logic formulas
[Saraswat 1993, Nielsen et al. 2002, Olarte & Valencia 2008b], i.e., they can be read
and understood as logical specifications. Hence, CCP-based languages are suitable
for both the specification and verification of programs. In the CCP language used in
this paper, processes can be interpreted as linear-time temporal logic formulas; we
shall exploit this correspondence to verify properties of our models.

3.1.2 This Work.

We describe initial results on the definition of a formal framework for the declara-
tive analysis of structured communications. We shall exploit utcc [Olarte & Valen-
cia 2008a], a timed CCP process calculus, to give a declarative interpretation to the
language defined by Honda, Vasconcelos, and Kubo in [Honda et al. 1998] (hence-
forth referred to as HVK). This way, structured communications can be analysed in
a declarative framework where time is defined explicitly. We begin by proposing an
encoding of the HVK language into utcc and studying its correctness. We then move
to the timed setting, and propose HVKT, a timed extension of HVK. The extended
language explicitly includes information on session duration, allows for declarative
preconditions within session establishment constructs, and features a construct for
session abortion. We then discuss how the encoding of HVK into utcc straightfor-
wardly extends to HVKT.

3.1.3 A Compelling Example.

We now give intuitions on how a declarative approach could be useful in the analysis
of structured communications. Consider the ATM example from [Honda et al. 1998,
Sect. 4.1], given below:

ATM(a� b) =accept �(�) in � ![��];

� ⇤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

������� : request �(�) in
�?(���) � � � �������;
�![��� ���]; ATM(�� �)f

�������� : request �(�) in
�?(���) � � � �������� ; �![��� ���];

� ⇤

�
������� : � � ��������; � ![���]; ATM(�� �)f

������� : � � �������� �; ATM(�� �)

�

f
������� : request �(�) in � � �������; �?(���) �
� ![���]; ATM(�� �)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

58 Chapter 3. A Unified Framework for Declarative Structured Communications

Here, an ATM has established two sessions: the first one with a user, sharing
session � over service �, and the second one with the bank, sharing session � over
service �. The ATM offers deposit, balance, and withdraw operations. When ex-
ecuting a withdraw, if there is not enough money in the account, then an overdraft
message appears to the user. It is interesting to analyse what occurs when this sce-
nario is extended to consider a card reader that acts as a malicious interface between
the user and the ATM. The user communicates his personal data with the reader us-
ing the service � , which will be kept by the reader after the first withdraw operation
to continue withdrawing money without the authorisation of the user. A greedy card
reader could even withdraw repeatedly until causing an overdraft (labelled “over”),
as expressed below:

Reader =accept �(� �) in � �?(��) � request �(�) in � ![��];

� � ⇤

�
�������� : � �?(���) � � � �������� ; � ![���];
� ⇤ {�������� : � � � ��������; � ![���]; R (�� ���)

f
���� : Q}

�

R (j� x) =def R � in � � �������� ; �![�]; � ⇤
�

�������� : �?(���) � R �
n

���� : Q
�

User =request �(� �) in � �![��I�];

� � � �������� ; � �![58]; � � ⇤
�

�������� : � �?(���) � P
n

���� : Q
�

By creating sessions between them, the card reader R����� is able to receive
the user’s information, and to use it later by attempting a session establishment
with the bank. Following authentication steps (not modelled above), the card reader
allows the user to obtain the requested amount. Additional withdrawing transactions
between the reader and the bank are defined by the recursive process R . In the
specification above, the process Q can be assumed to send a message (through a
session with the bank) representing the fact that the account has run out of money:
Q = ����� ![0]; inact.

Even in this simple scenario, the combination of operational and declarative rea-
soning techniques may come in handy to reason about the possible states of the
system. Indeed, while an operational approach can be used to describe an oper-
ational description of the compromised ATM above, the declarative approach can
complement such a description by offering declarative insights regarding its evolu-
tion. For instance, assuming Q as above, one could show that a utcc specification of
the ATM example satisfies the linear temporal logic formula 3 out(����� � 0), which
intuitively means that in presence of a malicious card reader the user’s bank account
will eventually reach an overdraft status.

3.2. Preliminaries 59

3.1.4 Related Work.

One approach to combine the declarative flavour of constraints and process calculi
techniques is represented by a number of works that have extended name-passing
calculi with some form of partial information (see, e.g., [Victor & Parrow 1998, Diaz
et al. 1998]). The crucial difference between such a strand of work and CCP-based
calculi is that the latter offer a tight correspondence with logic, which greatly broad-
ens the spectrum of reasoning techniques at one’s disposal. Recent works similar
to ours include CC-Pi [Buscemi & Montanari 2007] and the calculus for structured
communications in [Coppo & Dezani-Ciancaglini 2009]. Such languages feature el-
ements that resemble much ideas underlying CCP (especially [Buscemi & Monta-
nari 2007]). The main difference between our approach and such works is that we
adhere to the use of declarative reasoning techniques based on temporal logic as
an effective way of complementing operational reasoning techniques. In [Buscemi &
Montanari 2007], the reasoning techniques associated to CC-Pi are essentially op-
erational, and used to reason about service-level agreement protocols. In [Coppo
& Dezani-Ciancaglini 2009], the key for analysis is represented by a type system
which provides consistency for session execution, much as in the original approach
in [Honda et al. 1998].
Plan of the Document. Section 3.2 recalls the syntax and main intuitions of the
session language in [Honda et al. 1998] and introduces utcc, the timed CCP language
we shall use to give a declarative interpretation of sessions. Such an interpretation
is presented in Section 3.3, where additional timed sessions constructs are motivated
and introduced. An extended example is presented in Section 3.4.1. Section 3.5 offers
some concluding remarks and outlines directions for ongoing and future work.

3.2 Preliminaries

3.2.1 A Language for Structured Communication

We begin by introducing HVK, a language for structured communication proposed in
[Honda et al. 1998]. We assume the following conventions: names are ranged over by
�� �� � � � ; channels are ranged over by �� � �; variables are ranged over by �� �� � � � ;
constants (names, integers, booleans) are ranged over by �� ��� � � � ; expressions (in-
cluding constants) are ranged over by �� ��� � � � ; labels are ranged over by �� ��� � � � ;
process variables are ranged over by X � Y � � � � . Finally, �� ��� � � � denote names and
channels. We shall use �� to denote a sequence (tuple) of variables �1����� of length
� = |��|. Notation �� will be similarly applied to other syntactic entities. The sets of
free names/channels/variables/process variables of P , is defined in the standard way,
and are respectively denoted by fn(·), fc(·), fv(·), and fpv (·). Processes without free
variables or free channels are called programs.

Definition 3.2.1 (The HVK language [Honda et al. 1998]). Processes in HVK are
built from:

60 Chapter 3. A Unified Framework for Declarative Structured Communications

P,Q ::= request �(�) in P Session Request
| accept �(�) in P Session Acceptance
| � ![��]; P Data Sending
| �?(��) � P Data Reception
| � � �;P Label Selection
| � ⇤ {�1 : P1

f
· · ·

f
�� : P�} Label Branching

| throw � [� �]; P Channel Sending
| catch � (� �) in P Channel Reception
| if � then P else Q Conditional Statement
| P | Q Parallel Composition
| inact Inaction
| (ν�)P Hiding
| def D in P Recursion
| X [�� ��] Process Variables

D ::= X1(�1�1) = P1 and · · · and X�(����) = P�
Declaration for Recursion

3.2.1.1 Operational Semantics of HVK.

The operational semantics of HVK is given by the reduction relation −→� which is
the smallest relation on processes generated by the rules in Figure 3.1.

Definition 3.2.2 (Structural Congruence). The structural congruence relation ≡� is
the smallest relation satisfying:

(i) P ≡� Q if they differ only by a renaming of bound variables (alpha-conversion).

(ii) P | inact ≡� P , P | Q ≡� Q | P , (P | Q) | R ≡� P | (Q | R).

(iii) (ν�)inact ≡� inact, (ν���)P ≡� (ν���)P , (ν�)(P | Q) ≡� (ν�)P | Q if � /∈ fv(Q),
(ν�)(def D in P) ≡� (def D in ((ν�)P)) if � /∈ fv(D).

(iv) (def D in P) | Q ≡� def D in (P | Q) if fpv (D) ∩ fpv (Q) = ∅.

(v) def D in (def D� in P) ≡� def D and D� in P if fpv (D) ∩ fpv (D�) = ∅.

Let us give some intuition about the language constructs and the rules in Figure
3.1. The central idea in HVK is the notion of a session, i.e., a series of reciprocal
interactions between two parties, possibly with branching, delegation and recursion,
which serves as an abstraction unit for describing structured communication. Each
session has associated a specific port, or channel. Channels are generated at session
initialisation; communications inside the session take place on the same channel.

More precisely, sessions are initialised by a process of the form request �(�) in Q
| accept �(�) in P . In this case, there is a request, on name �, for the initiation of
a session and the generation of a fresh channel. This request is matched by an
accepting process on �, which generates a new channel � , thus allowing P and Q
to communicate each other. This is the intuition behind rule L���. Three kinds of

3.2. Preliminaries 61

request �(�) in Q | accept �(�) in P −→� (ν�)(P | Q) (Link)

(� ![��]; P) | (�?(��) � Q) −→� P | Q[��/��] if � ↓ �� (Com)

� � ��; P | � ⇤
�

�1 : P1
n

· · ·
n

�� : P�
�

−→� P | P� (1 ≤ � ≤ �) (Label)

throw � [� �]; P | catch � (� �) in Q −→� P | Q (Pass)

if � then P else Q −→� P (� ↓ tt) (If1)

if � then P else Q −→� Q (� ↓ ff) (If2)

def D in (X [�� ��] | Q) −→� def D in (P [��/��] | Q) (� ↓ ��� X (����) = P ∈ D) (Def)

P −→� P � implies (ν�)P −→� (ν�)P � (Scop)

P −→� P � implies P | Q −→� P � | Q (Par)

If P ≡� P � and P � −→� Q� and Q� ≡� Q then P −→� Q (Str)

Figure 3.1: Reduction Semantics of HVK (−→�)[Honda et al. 1998].

atomic interactions are available in the language: sending (including name passing),
branching, and channel passing (also referred to as delegation). Those actions are
described by rules C��, L����, and P���, respectively. In the case of C��, the ex-
pression �� is sent on the port (session channel) � . Process �?(��) � Q then receives
such a data and executes Q[��/��], where �� is the result of evaluating the expression ��.
The case of P��� is similar but considering that in the constructs throw � [� �]; P and
catch � (� �) in Q, only session names can be transmitted. In the case of L����, the
process � � ��; P selects one label and then the corresponding process P� is executed.
The other rules are self-explanatory.

For the sake of simplicity, and without loss of generality (due to rule 5 of ≡�), in
the sequel we shall assume programs of the form def D in P where there are not
procedure definitions in P .

3.2.2 Timed Concurrent Constraint Programming

Timed concurrent constraint programming (tcc) [Saraswat et al. 1994] extends CCP
for modelling reactive systems. In tcc, time is conceptually divided into time units
(or time intervals). In a particular time unit, a tcc process P gets an input (i.e. a
constraint) � from the environment, it executes with this input as the initial store, and
when it reaches its resting point, it outputs the resulting store � to the environment.
The resting point determines also a residual process Q which is then executed in the
next time unit. It is worth noticing that the final store is not automatically transferred
to the next time unit.

62 Chapter 3. A Unified Framework for Declarative Structured Communications

The utcc calculus [Olarte & Valencia 2008a] extends tcc for reactive systems
featuring mobility. Here mobility is understood as the dynamic reconfiguration of
system linkage through communication, much like in the π-calculus [Sangiorgi &
Walker 2001]. utcc generalises tcc by considering a parametric ask operator of the
form (abs �� ; �) P , with the following intuitive meaning: process P [��/��] is executed for
every term �� such that the current store entails an admissible substitution �[��/��]. This
process can be seen as an abstraction of the process P on the variables �� under the
constraint (or with the guard) �.

utcc provides a number of reasoning techniques: First, utcc processes can be
represented as partial closure operators (i.e. idempotent and extensive functions).
Also, for a significant fragment of the calculus, the input-output behaviour of a pro-
cess P can be retrieved from the set of fixed points of its associated closure operator
[Olarte & Valencia 2008b]. Second, utcc processes can be characterised as First-order
Linear-time Temporal Logic (FLTL) formulas [Manna & Pnueli 1992]. This declarative
view of the processes allows for the use of the well-established verification tech-
niques from FLTL to reason about utcc processes.

Syntax. Processes in utcc are parametric in a constraint system [Saraswat 1993]
which specifies the basic constraints that agents can tell or ask during execution.
It also defines an entailment relation “�” specifying interdependencies among con-
straints. Intuitively, � � � means that the information in � can be deduced from that
in � (as in, e.g., � > 42 � � > 0).

The notion of constraint system can be set up by using first-order logic (see e.g.,
[Nielsen et al. 2002]). We assume a first-order signature Σ and a (possibly empty)
first-order theory ∆, i.e., a set of sentences over Σ having at least one model. Con-
straints are then first-order formulas over Σ. Consequently, the entailment relation
is defined as follows: � � � if the implication � ⇒ � is valid in ∆.

The syntax of the language is as follows:

P� Q := skip
| tell(�)
| (abs �� ; �) P
| P

f
Q

| (local �� ; �) P
| next P
| unless � next P
| ! P

with the variables in �� being pairwise distinct.
A process skip does nothing; a process tell(�) adds � to the store in the current

time interval. A process Q = (abs �� ; �) P binds the variables �� in P and �. It executes
P [��/��] for every term �� s.t. the current store entails an admissible substitution over
�[��/��]. The substitution [��/��] is admissible if |��| = |��| and no �� in �� occurs in �� .

3.2. Preliminaries 63

Furthermore, Q evolves into skip at the end of the time unit, i.e., abstractions are not
persistent when passing from one time unit to the next one. P

f
Q denotes P and

Q running in parallel during the current time unit. A process (local �� ; �) P binds the
variables �� in P by declaring them private to P under a constraint �. If � = tt, we
write (local ��) P instead of (local �� ; tt) P . The unit delay next P executes P in the
next time unit. The time-out unless � next P is also a unit delay, but P is executed
in the next time unit iff � is not entailed by the final store at the current time unit.
Finally, the replication ! P means P

f
next P

f
next2P

f
� � �, i.e., an unbounded number

of copies of P but one at a time. We shall use ! [�]P to denote bounded replication,
i.e., P

f
next P

f
���

f
next �−1P .

From a programming language perspective, variables �� in (abs �� ; �) P can be seen
as the formal parameters of P . This way, recursive definitions of the form X (��)

def
= P

can be encoded in utcc as

�[[X (��)
def
= P]] =! (abs �� ; callx (��)) �P (3.1)

where callx is an uninterpreted predicate (a constraint) of arity |��|. Process �P is ob-
tained from P by replacing recursive calls of the form X (��) with tell(callx (��)). Similarly,
calls of the form X (��) in other processes are replaced with tell(callx (��)).

3.2.2.1 Operational Semantics.

The operational semantics considers transitions between process-store configura-
tions �P� �� with stores represented as constraints and processes quotiented by the
structural congruence ≡� defined below. We shall use γ� γ�� � � � to range over config-
urations.

The semantics is given in terms of an internal and an observable transition re-
lation; both are given in Figure 3.2. In RA , �� �= �� (�� syntactically different from ��)
denotes

�
1≤�≤|��| �� �

�
= ��. If |��| = 0, �� �

�
= �� is defined as ff . The internal transition

�P� �� −→ �P �� ��� informally means “P with store � reduces, in one internal step,
to P � with store �� ”. We sometimes abuse of notation by writing P −→ P � when
�� �� are unimportant. The observable transition P

(���)
===⇒ R means “P on input �,

reduces in one time unit to R and outputs �”. The latter is obtained from a finite
sequence of internal transitions.

Definition 3.2.3 (Structural Congruence). The structural congruence ≡� is the small-
est congruence satisfying:

(i) P ≡� Q if they differ only by a renaming of bound variables,

(ii) P
f

skip ≡� P ,

(iii) P
f

Q ≡� Q
f

P ,

(iv) P
f
(Q

f
R) ≡� (P

f
Q)

f
R ,

(v) P
f
(local �� ; �) Q ≡� (local �� ; �) (P

f
Q) if �� �∈ fv(P),

64 Chapter 3. A Unified Framework for Declarative Structured Communications

RT

�tell (d)� c� −→ �skip� c ∧ d�

RP
�P� c� −→ �P �� c��

�P
f

Q� c� −→ �P � f Q� c��

RS
γ�

1 −→ γ�
2

γ1 −→ γ2

if γ1 ≡ γ�
1�

γ2 ≡ γ�
2

RR

�!P� c� −→ �P
f

next (!P)� c�

RU
� � �

�unless c next P� d� −→ �skip� d�

RL
�P� (∃x̃d) ∧ c� −→ �P �� (∃x̃d) ∧ c��

�(local �� ; c) P� d� −→ �(local �� ; c�) P �� (∃x̃c�) ∧ d�

RA
d � c[��/��] |��| = |��|

�(abs �� ; c) P� d� −→ �P [��/��]
f
(abs �� ; c ∧ (x̃ �= t̃)) P� d�

RO
�P� c� −→∗ �Q� d� �−→

P
(���)

======⇒ F (Q)

Where F (Q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

skip if Q = skip
F (Q1)

f
F (Q2) if Q = Q1

f
Q2

R if Q = next (R)
skip if Q = (λ �� ; c) R
(local ��) F (R) if Q = (local �� ; c) R
R if Q = unless c next R

Figure 3.2: Transition System for utcc: Internal and Observable transitions

(vi) (local �� ; �) (local ��; �) P ≡� (local �� ; �� ; � ∧ �) P if �� ∩ �� = ∅ and �� /∈ fv(�).

We extend ≡� by decreeing that �P� �� ≡� �Q� �� iff P ≡� Q.

Definition 3.2.4 (Output Behaviour). Let � = �1��2������ be a sequence of constraints.
If P = P1

(tt��1)
===⇒ P2

(tt��2)
===⇒ � � � P�

(tt���)
===⇒ P�+1 ≡� Q we shall write P

�
===⇒

∗
Q.

If � = �1��2��3��� is an infinite sequence, we omit Q in P
�

===⇒
∗

Q. The output
behaviour of P is defined as o(P) = {� | P

�
===⇒

∗
}. If o(P) = o(Q) we shall

write P ∼o Q. Furthermore, if P
�

===⇒ Q and � is unimportant we simply write
P ===⇒∗ Q.

Logic Correspondence. Remarkably, in addition to this operational view, utcc pro-
cesses admit a declarative interpretation based on Pnueli’s first-order linear-time

3.2. Preliminaries 65

temporal logic (FLTL) [Manna & Pnueli 1992]. This is formalised by the encoding
below, which maps utcc processes into FLTL formulas.

Definition 3.2.5. Let TL[[·]] a map from utcc processes to FLTL formulas given by:

TL[[skip]] = tt
TL[[tell(�)]] = �

TL[[P
n

Q]] = TL[[P]] ∧ TL[[Q]]

TL[[(abs ��; �) P]] = ∀��(� ⇒ TL[[P]])
TL[[(local �� ; �) P]] = ∃��(� ∧ TL[[P]])
TL[[next P]] = ◦TL[[P]]
TL[[unless � next P]] = � ∨ ◦TL[[P]]
TL[[! P]] = 2TL[[P]]

Modalities ◦F and ⇤F represent that F holds next and always, respectively. We
use the eventual modality 3F as an abbreviation of ¬⇤¬F .

The following theorem relates the operational view of processes with their logic
interpretation.

Theorem 3.2.6 (Logic correspondence [Olarte & Valencia 2008a]). Let TL[[·]] be
as in Definition 3.2.5, P a utcc process and � = �1��2��3��� an infinite sequence
of constraints s.t. P

�
===⇒

∗
. For every constraint �, it holds that: TL[[P]] �

3� iff there exists � ≥ 1 s.t. �� � � .

Recall that an observable transition P
(����)

===⇒ Q is obtained from a finite sequence
of internal transitions (rule RO). We notice that there exist processes that may produce
infinitely many internal transitions and as such, they cannot exhibit an observable
transition; an example is (abs � ; �(�)) tell(�(� + 1)). The utcc processes considered in
this paper are well-terminated, i.e., they never produce an infinite number of internal
transitions during a time unit. Notice also that in the Theorem 3.2.6 the process P
is assumed to be able to output a constraint �� for all time-unit � ≥ 1. Therefore, P
must be a well-terminated process.

Derived Constructs. Let out be an uninterpreted predicate. One could attempt
at representing the actions of sending and receiving as in a name-passing cal-
culus (say, � ! [��] and �?(��) � P , resp.) with the utcc processes tell(out(�� ��)) and
(abs �� ; out(�� ��)) P , respectively. Nevertheless, since these processes are not auto-
matically transferred from one time unit to the next one, they will disappear right
after the current time unit, even if they do not interact. To cope with this kind of
behaviour, we shall define versions of (abs �� ; �) P and tell(�) processes that are per-
sistent in time. More precisely, we shall use the process (wait �� ; �) do P , which
transfers itself from one time unit to the next one until, for some �� , �[��/��] is entailed
by the current store. Intuitively, the process behaves like an input that is active

66 Chapter 3. A Unified Framework for Declarative Structured Communications

until interacting with an output. When this occurs, the process outputs the constraint
�[��/��], as a way of acknowledging the successful read of �. When |��| = 0, we shall
write whenever � do P instead of (wait �� ; �) do P . Similarly, we define tell(�) for the
persistent output of � until some process “reads" �. These processes can be expressed
in the basic utcc syntax as follows (in all cases, we assume ����� �� /∈ fv(�)):

tell(�)
def
= (local ��� ����) (tell(out�(��))

n
! when out

�(��) do tell(�)
n

! unless out

�(����) next tell(out�(��))
n

! when � do ! tell(out�(����)))

(wait �� ; �) do P
def
= (local ����� ��) (tell(out�(��))

n
! unless out

�(����) next tell(out�(��))
n
! (abs �� ; � ∧ out

�(��)) (P
n
! tell(out�(����)))

(wait �� ; �) do P
def
= (wait �� ; �) do (P

n
tell(�))

Notice that once a pair of processes tell and wait interact, their continuation in
the next time unit is a process able to output only a constraint of the form ∃� out�(�)
(e.g., ∃����(out�(����))). We define the following equivalence relation that allows us
to abstract from these processes.

Definition 3.2.7 (Observables). Let ∼o be the output equivalent relation in Defini-
tion 3.2.4. We say that P and Q are observable equivalent, notation P ∼obs Q, if
P

f
! tell(∃�out�(�)) ∼o Q

f
! tell(∃�out�(�)).

Using the previous equivalence relation, we can show the following.

Proposition 3.2.8. Assume that �(��) is a predicate symbol of arity |��|.

1. If � �� �[��/��] for any �� then (wait �� ; �) do P
(���)

===⇒ (wait �� ; �) do P .

2. If P ≡� tell(�(��))
f
(wait �� ; �(��)) do next Q then P ===⇒∼obs Q[��/��].

3.3 A Declarative Interpretation for Structured Communications

The encoding [[·]] from HVK into utcc is defined in Figure 3.3. Two noteworthy as-
pects when considering such a translation are determinacy and timed behaviour.
Concerning determinacy, it is of uttermost importance to recall that while utcc is
a deterministic language, HVK processes may exhibit non-deterministic behaviour.
Moreover, while HVK is a synchronous language, whereas utcc is asynchronous.
Consider, for instance, the HVK process:

P = � ![��]; Q1 | � ![���]; Q2 | �?(��) � Q3

3.3. A Declarative Interpretation for Structured Communications 67

Process P can have two possible transitions, and evolve into � ![���]; Q2 | Q3[��/��] or
into � ![��]; Q1 | Q3[���/��]. In both cases, there is an output that cannot interact with the
input �?(��) � Q3. In utcc, inputs are represented by abstractions which are persistent
during a time unit. As a result, in the encoding of P we shall observe that both
outputs react with the same input, i.e. that [[P]] ===⇒ [[Q3[��/��]]]

f
[[Q3[���/��]]].

As for timed behaviour, it is crucial to observe that while HVK is an untimed
calculus, utcc provides constructs for explicit time. In the encoding we shall advocate
a timed interpretation of HVK in which all available synchronisations between pro-
cesses occur at a given time unit, and the continuations of synchronised processes
will be executed in the next time unit. This will prove convenient when showing the
operational correspondence between both calculi, as we can relate the observable
behaviour in utcc and the reduction semantics in HVK.

Let us briefly provide some intuitions on [[·]]. Consider HVK processes P =
request �(�) in P � and Q = accept �(�) in Q�. The encoding of P declares a
new variable session � and sends it through the channel � by posting the constraint
req(�� �). Upon reception of the session key (local variable) generated by [[P]], pro-
cess [[Q]] adds the constraint acc(�� �) to notify the acceptance of � . They can then
synchronise on this constraint, and execute their continuations in the next time unit.
The encoding of label selection and branching is similar, and uses constraint sel(�� �)
for synchronisation. We use the parallel composition

�
1≤�≤�

when � = �� do next [[P�]]

to execute the selected choice. Notice that we do not require a non-deterministic
choice since the constraints � = �� are mutually exclusive. As in [Honda et al. 1998], in
the encoding of if � then P else Q we assume an evaluation function on expressions.
Once � is evaluated, ↓ � is a constant boolean value. The encoding of def D in P
exploits the scheme described in Equation 3.1.

3.3.1 Operational Correspondence.

Here we study an operational correspondence property for our encoding. The dif-
ferences with respect to (a)synchrony and determinacy discussed above will have a
direct influence on the correspondence. Intuitively, the encoding falls short for HVK
programs featuring the kind of non-determinism that results from “uneven pairings”
between session requesters/providers, label selection/branching, and inputs/outputs
as in the example above.

We thus find it convenient to appeal to the type system of HVK to obtain some
basic determinacy of the source terms. Roughly speaking, the type discipline in
[Honda et al. 1998] ensures a correct pairing between actions and co-actions once
a session is established. Although the type system guarantees a correct match
between (the types of) session requesters and providers, it does not rule out the
kind of non-determinism induced by different orders in the pairing of requesters and
providers. We shall then require session providers to be always willing to engage
into a session. This is, given a channel �, we require that there is at most one accept
process (possibly replicated) on � that is able to synchronise with every process

68 Chapter 3. A Unified Framework for Declarative Structured Communications

[[request �(�) in P]] = (local �) (tell(req(�� �))
n

whenever acc(�� �) do next [[P]])

[[accept �(�) in P]] = (wait � ; req(�� �)) do (tell(acc(�� �))
n

next [[P]])

[[� ![��]; P]] = tell(out(�� ��))
n

whenever out(�� ��) do next [[P]]

[[�?(��) in P]] = (wait �� ; out(�� ��)) do next [[P]]

[[� � �; P]] = tell(sel(�� �))
n

whenever sel(�� �) do next [[P]]

[[� ⇤
�

�1 : P1
n

� � �
n

�� : P�
�

]] = (wait �; sel(�� �)) do
�

1≤�≤�
when � = �� do next [[P�]]

[[throw � [� �]; P]] = tell(outk(�� � �))
n

whenever outk(�� � �) do next [[P]]

[[catch � (� �) in P]] = whenever outk(�� � �) do next [[P]]

[[if � then P else Q]] = when � ↓ tt do next [[P]]
n

when � ↓ ff do next [[Q]]

[[P|Q]] = [[P]]
n
[[Q]]

[[inact]] = skip
[[(ν�)P]] = (local �) [[P]]

[[def D in P]] =
�

X�(����)∈D
�[[X�(����)]]�P

Figure 3.3: Encoding from HVK into utcc. �[[·]] and �P are defined in Equation 3.1.

requesting a session on �. Notice that this requirement is in line with a meaningful
class of programs, namely those described by the type discipline developed in [Berger
et al. 2008, Berger et al. 2001].

Before presenting the operational correspondence, we introduce some auxiliary
notions.

Definition 3.3.1 (Processes in normal form). We say that a HVK process P is in
normal form if takes the form inact or def D in ν��(Q1 | · · · | Q�) where neither the
operators “ν” and “|” nor process variables occur in the top level of Q1� � � � � Q�.

The following proposition states that given a process P we can find a process
P � in normal form, such that: either P � is structurally congruent to P , or it results
from replacing the process variables at the top level of P with their corresponding
definition (using rule D��).

Proposition 3.3.2. For all HVK process P there exists P � in normal form s.t. P −→∗
�≡�

3.3. A Declarative Interpretation for Structured Communications 69

P � only using the rules D�� and S�� in Figure 3.1.

Proof. Let P be a process of the form def D in Q where there are no procedure
definitions in Q. By repeated applications of the rule D��, we can show that P −→∗

�
P � where P � does not have occurrences of processes variables in the top level. Then,
we use the rules of the structural congruence to move the local variables to the
outermost position and find P �� ≡� P � in the desired normal form.

Notice that the rules of the operational semantics of HVK are given for pairs of
processes that can interact with each other. We shall refer to each of those pairs as
a redex.

Definition 3.3.3 (Redex). A redex is a pair of complementary processes composed in
parallel as in:

(1)request �(�) in P | accept �(�) in Q
(2)� ![��]; P | �?(��) in Q
(3)throw � [� �]; P | catch � (� �) in Q

(4)� � �; P | � ⇤
�

�1 : P1
n

· · ·
n

�� : P�
�

Notice that a redex in HVK synchronises and reduces in a single transition
as in (� ![��]; P) | (�?(��) in Q) −→� P | Q[��/��]. Nevertheless, in utcc, the encod-
ing of the processes above requires several internal transitions for adding the con-
straint out(�� ��) to the current store, and for “reading" that constraint by means of
(wait �� ; out(�� ��)) do next [[Q]] to later execute next [[Q[��/��]]]. We shall then establish
the operational correspondence between an observable transition of utcc (obtained
from a finite number of internal transitions) and the following subset of reduction
relations over HVK processes:

Definition 3.3.4 (Outermost Reductions). Let P ≡� def D in ν��(Q1 | · · · | Q�) be an
HVK program in normal form. We define the outermost reduction relation P ===⇒�
P � as the maximal sequence of reductions P −→∗

� P � ≡� def D in ν �� �(Q�
1 | · · · | Q�

�)
such that for every � ∈ {1� ���}, either

1. Q� = if � then R1 else R2 −→� R1/2 = Q�
�;

2. for some � ∈ {1� ���}, Q�|Q� is a redex such that Q�|Q� −→� ν��(Q�
�|Q�

�), with
�� ⊆ �� �;

3. there is no � ∈ {1� ���} such that Q� | Q� is a redex and Q� ≡� Q�
� .

One may argue that the above-presented definition may rule out some possible
reductions in HVK. Returning to the concerns about determinacy, an outermost
reduction filters out cases where there are more than one possible reduction for a
set of parallel processes (i.e.: the parallel composition of two outputs and one input
with the same session key). The use of outermost reductions gives us a subset of

70 Chapter 3. A Unified Framework for Declarative Structured Communications

possible reductions in HVK that keeps synchronous processes and discard processes
that are not going to interact in any way (recall that in the typing discipline of HVK
the composition of an input and an output with the same session key will consume the
channel used; hence, every other process sending information over the same session
will not have any complementary process to synchronise with).

In the sequel we shall thus consider only HVK processes P where for � ≥ 1,
if P ≡� P1 ===⇒� P2 ===⇒� · · · ===⇒� P� and P ≡� P �

1 ===⇒� P �
2 ===⇒�

· · · ===⇒� P �
� then P� ≡� P �

� for all � ∈ {1� ��� �}, i.e., P is a deterministic process.

Theorem 3.3.5 (Operational Correspondence). Let P� Q be deterministic HVK pro-
cesses in normal form and R ,S be utcc processes. It holds:
1) Soundness: If P ===⇒� Q then, for some R , [[P]] ===⇒ R ∼obs [[Q]];
2) Completeness: If [[P]] ===⇒ S then, for some Q, P ===⇒� Q and [[Q]] ∼obs S .

Proof. Assume that P ≡� def D in ν��(Q1 | · · · | Q�) and Q ≡� def D in ν �� �(Q�
1 | · · · | Q�

�).

1. Soundness. Since P ===⇒� Q there must exist a sequence of derivations
of the form P ≡� P1 −→� P2 −→� ��� −→� P� ≡� Q. The proof proceeds
by induction on the length of this derivation, with a case analysis on the last
applied rule. We then have the following cases:

(a) Using the rule I��. It must be the case that there exists Q� ≡� if � then R1 else R2
and Q� −→� R1 ≡� Q�

� and � ↓ tt. One can easily show that when � ↓
tt do next [[Q�

�]] ===⇒ [[Q�
�]].

(b) Using the rule I�� Similarly as for I��.

(c) Using the rule L���. It must be the case that there exist �� � such that Q� ≡�
request �(�) in Q�

� and Q� ≡� accept �(�) in Q�
� and then Q� | Q� −→�

(ν�)(Q�
� | Q�

�). We then have a derivation

[[Q�]]
n
[[Q�]] −→∗ (local � ; �) (R �

�
n

whenever acc(�� �) do next [[Q�
�]]

n

(wait � �; req(�� � �)) do (tell(acc(�� � �))
n

next ([[Q�
�]]))

−→∗ (local � ; ��) (R �
�
n

whenever acc(�� �) do next [[Q�
�]]

n

R �
�
n

tell(acc(�� �))
n

next ([[Q�
� [� /� �]]])

−→∗ (local � ; ���) (R �
�
n

R �
�
n

next [[Q�
�]]

n
next ([[Q�

� [� /� �]]]) �−→

where � = req(�� �)� �� = �∧req(�� �)� ��� = �� ∧acc(�� �)∧acc(�� �) and
R �

� , R �
� are the processes resulting after the interaction of the processes in

3.3. A Declarative Interpretation for Structured Communications 71

the parallel composition tell(req(�� �))
f
(wait � �; req(�� � �)) do · · · , i.e.:

R �
� ≡� (local ��� ����; out�(��) ∧ out

�(����) ∧ �(��))

next ! unless out

�(����) next tell(out�(��))
n

next ! tell(out�(����))

R �
� ≡� (local ������ ���; out�(���) ∧ �(��) ∧ out

�(�����)) next ! tell(out�(�����))
n

next ! unless out

�(�����) next tell(out�(���))
n
(λ �� ; c ∧ out

�(go�) ∧ x̃ �
�
= t̃) (Q

n
tell(�(��))

n
! tell(out�(�����))

n
next ! (λ �� ; c ∧ out

�(go�)) (Q
n

tell(�(��))
n
! tell(out�(�����))

We notice that R �
�
f

R �
� �−→ and it is a process that can only output the

constraint out�(�) where � is a local variable. By appealing to Proposition
3.2.8 we conclude [[Q�]]

f
[[Q�]] ===⇒∼obs (local �) ([[Q�

�]]
f
[[Q�

�]]).
(d) The cases using the rules L���� and P��� can be proven similarly as the

case for ����.

2. Completeness. Given the encoding and the structure of P , we have a utcc
process R = [[P]] s.t.

R ≡� (local ��) ([[Q1]]
n

���
n
[[Q�]]) �

Let R� = [[Q�]] for 1 ≤ � ≤ �. By an analysis on the structure of R , if R� −→ R �
�

then it must be the case that either (a) R� = when � do next [[Q�
�]] and R �

� =
next [[Q�

�]] or (b) �R�� �� −→ �R �
� � � ∧ �� where � is a constraint of the form req(·),

sel(·), out(·), or outk(·). In both cases we shall show that there exists a R ��
�

such that R� −→∗ R ��
� �−→ such that Q� −→� Q�

� and R ��
� = next [[Q�

�]].

(a) Assume that R� = when � ↓ tt do next [[Q�
�]] for some Q�

� . Then it must be the
case that Q� = if � then Q�

� else Q��
� . If � ↓ tt we then have R ��

� = next [[Q�
�]].

The case when � ↓ ff is similar by considering R� = when � ↓ ff do Q�
� .

(b) Assume now that �R�� �� −→ �R �
� � �∧�� where � is of the form req(·), sel(·),

out(·) or outk(·). We proceed by case analysis of the constraint �. Let us
consider only the case � = ∃� (req(�� �)); the cases in which � takes the
form sel(·), out(·), or outk(·) are handled similarly. If � = ∃� (req(�� �))
for some �, then we must have that Q� ≡� request �(�) in Q�

� for some
�. If there exists � such that Q� ≡� accept �(�) in Q�

� , one can show a
derivation similar to the case of the rule L��� in soundness to prove that
R�

f
R� −→∗∼o (local �) (next [[Q�

�]]
f

next [[Q�
�]]). If there is no Q� such that

Q� |Q� forms a redex, then one can show by using (1) in Proposition 3.2.8
that R� ===⇒∼obs R� .

72 Chapter 3. A Unified Framework for Declarative Structured Communications

P ::= request �(�) during � in P (Timed Session Request)
|accept �(�) given � in P (Declarative Session Acceptance)
| · · · (the other constructs, as in Def. 3.2.1)
|kill �� (Session Abortion)

Figure 3.4: HVKT: Syntax of the language

3.4 A Timed Extension of HVK

We now propose an extension to HVK in which a bundled treatment of time is explicit
and session closure is considered. More precisely, the HVKT language arises as the
extension of HVK processes (Def. 3.2.1) with refined constructs for session request
and acceptance, as well as with a construct for session abortion:

Definition 3.4.1 (A timed language for sessions). HVKT processes are given by the
grammar in figure 3.4:

The intuition behind these three operators is the following: request �(�) during � in P
will request a session � over the service name � during � time units. Its dual con-
struct is accept �(�) given � in P : it will grant the session key � when requested
over the service name � provided by a session and a successful check over the con-
straint �. Notice that � stands for a precondition for agreement between session
request and acceptance. In �, the duration � of the corresponding session key �
can be referenced by means of the variable durk . In the encoding we syntactically
replace it by the variable corresponding to �. Finally, kill �� will remove �� from the
valid set of sessions.

Adapting the encoding in Figure 3.3 to consider HVKT processes is remarkably
simple (see Figure 3.5). Indeed, modifications to the encoding of session request
and acceptance are straightforward. The most evident change is the addition of
the parameter � within the constraint req(�� �� �). The duration of the requested
session is suitably represented as a bounded replication of the process defining the
activation of the session � represented as the constraint act(�). The execution of
the continuation [[P]] is guarded by the constraint act(�) (i.e. P can be executed only
when the session � is valid). Thus, in the encoding we use the function ��(P) to
denote the process behaving as P when the constraint � can be entailed from the
current store, doing nothing otherwise. More precisely:

3.4. A Timed Extension of HVK 73

[[request �(�) during � in P]] = (local �) tell(req(�� �� �))
n

whenever acc(�� �) do next (

tell(act(�))
n

�act(�)([[P]])
n

! [�]unless kill(�) next tell(act(�)))

[[accept �(�) given � in P]] = (wait � ; req(�� �� �) ∧ �[�/durk]) do

(tell(acc(�� �))
n

next �act(�)([[P]]))

[[kill �]] =! tell(kill(�))

Figure 3.5: Encoding of HVKT. ��(P) is in Definition 3.4.2.

Definition 3.4.2. Let � : � → P���� → P���� be defined as:

��(skip) =skip

��(P1
n

P2) =��(P1)
n

��(P2)

��(tell(�)) =when � do tell(�)
��(! Q) =! ��(Q)
��(next Q) =when � do next ��(Q)
��((abs �� ; �) Q) =(abs �� ; �) ��(Q) if �� /∈ fv(�)
��(unless � next Q) =when � do unless � next ��(Q)
��((local �� ; �) Q) =(local �� ; �) ��(Q) if �� /∈ fv(�)

On the side of session acceptance, the main novelty is the introduction of �[�/durk].
As explained before, we syntactically replace the variable durk by the corresponding
duration of the session �. This is a generic way to represent the agreement that
should exist between a service provider and a client; for instance, it could be the case
that the client is requesting a session longer than what the service provider can or
want to grant.

3.4.1 Case Study: Electronic booking

Here we present an example that makes use of the constructs introduced in HVKT.
Let us consider an electronic booking scenario. On one side, consider a com-

pany AC which offers flights directly from its website. On the other side, there is
a customer looking for the best offers. In this scenario, the customer establishes a
timed session with AC and asks for a flight proposal given a set of constraints (dates
allowed, destination, etc.). After receiving an offer from AC, the customer can refine

74 Chapter 3. A Unified Framework for Declarative Structured Communications

C������� = request ��(�) during � in (� ![�����������]; S�����(�))

S�����(�) = �?(�� ���) in (if (�� ��������� ≤ 1500) then
� � C�������; else S�����(�))

AC = accept ��(�) given ���� ≤ MAX_TIME in (�?(�������D���) in

(ν�)� ![�]; � ⇤
�

C������� : A�����
n

R����� : kill �
�

)

Figure 3.6: Online booking example with two agents.

the selection further (e.g. by checking that the prices are below a given threshold)
and loops until finding a suitable option, that he will accept by starting the booking
phase. One possible HVKT specification of this scenario is described in Figure 3.6.

In a second stage, the customer uses an online broker to mediate between him
and a set of airlines acting as service providers. Let � be the number of service
providers, and consider two vectors of fixed length: Offers, which contains the list
[Offers0 � � � � � Offersi� � � � � Offersn] of offers received by a customer, and SP , which con-
tains the list of trusted services. First, the customer establishes a session with the
broker for a given period �; later on, he/she starts requesting for a flight by providing
the details of his/her trip to the broker. On the other side, the broker will look into
his pool of trusted service providers for the ones that can supply flights that suit the
customer’s requirements. All possible offers are transferred back to the customer,
who will invoke a local procedure S�� (not specified here) that selects one of the
offers by performing an output on name �. Once an offer is selected, the broker will
allow a final interaction between the customer and the selected service. He does
so by delegating to the customer the session key used previously between him and
the chosen service provider. Finally, the broker proceeds to cancel all those sessions
concerning the discarded services. An HVKT specification of this scenario is given
in Figure 3.7 where, for the sake of readability, processes denoting post-processing
activities are abstracted from the specification.

A notable advantage in using HVKT as a modelling language is the possibility
of exploiting timed constructs in the specification of service enactment and service
cancellation. In the above scenario it is possible to see how HVKT allows (i) to
effectively take explicit account on the maximal times accepted by the customer: the
composition of nested services can take different speeds but the service broker will
ensure that customers with low speeds are ruled out of the communication; and
(ii) to have a more efficient use of the available resources: since there is not need
to maintain interactions with discarded services, the service broker will free those
resources by sending kill signals.

3.4. A Timed Extension of HVK 75

Customer = request ��(�) during � in (� ![�����������];
�?(�) in (�
�∈�

(�?(Offersi) in (

S��(Offers); �?(�) in � ![x];
catch � (� �) in
� �![P������D������]; inact))))

SP = accept SP�(� �
�) given N ≤ 300�� in (

� �
�?(�������D���) in
� �

� ![offer];
� �

�?(�������D������) in inact)

Broker = accept ��(�) given � ≤ 500�� in (
�?(�������D���) in � ![|SP|];
(ν�)

�
�∈|SP|

(request SP�(� �
�) during N in

� �
� ![�������D���];

� �
�?(offeri) in (u![offeri]; inact

f
S(u� k)))

�?(�) in def X (Offers� � �
1� � � � � � �

�) = P in�
�∈|SP|

(if (y = offersi) then (throw k [k �
i]; PostProc) else

kill � �
�
f

P(X − {offersi� � �
�})))

S(u,k) =
�

�∈|SP|
(�?(offeri) in inact

f
k ![offeri]; inact)

Figure 3.7: Online booking example with online broker.

3.4.2 Exploiting the Logic Correspondence

To exploit the logic correspondence we can draw inspiration from the constraint
templates put forward in [Pesic & van der Aalst 2006], a set of LTL formulas that
represent desirable/undesirable situations in service management. Such templates
are divided in three types: existence constraints, that specify the number of executions
of an activity; relation constraints, that define the relation between two activities to
be present in the system; and negation constraints, which are essentially the negated
versions of relation constraints.

By appealing to Theorem 3.2.6, our framework allows for the verification of exis-
tence and relation constraints over HVKT programs. Assume a HVKT program P and
let F = TL[[[[P]]]] (i.e., the FLTL formula associated to the utcc representation of P). For
existence constraints, assume that P defines a service accepting requests on channel
�. If the service is eventually active, then it must be the case that F � 3∃� (acc(�� �))
(recall that the encoding of accept adds the constraint acc(�� �) when the session
� is accepted). A slight modification to the encoding of accept would allow us to

76 Chapter 3. A Unified Framework for Declarative Structured Communications

take into account the number of accepted sessions and then support the verification
of properties such as F � 3(N��������(�) = N), informally meaning that the service
� has accepted N sessions. This kind of formulas correspond to the existence con-
straints in [Pesic & van der Aalst 2006, Figure 3.1.a–3.1.c]. Furthermore, making use of
the guards associated to ask statements, we can verify relation constraints as even-
tual consequences over the system. Take for instance the specification in Figure 3.6.
Let A����� be a process that outputs “ok " through a session �. We then may verify
the formula F � ∃�(������� < 1�500 ⇒ out(�� ok)). This is a responded existence
constraint describing how the presence of an offer with price less or equal than 1�500
would lead to an acceptance state.

3.5 Concluding Remarks

We have argued for a timed CCP language as a suitable foundation for analysing
structured communications. We have presented an encoding of the language for
structured communication in [Honda et al. 1998] into utcc, as well as an extension of
such a language that considers explicitly elements of partial information and session
duration. To the best of our knowledge, a unified framework where behavioural and
declarative techniques converge for the analysis of structured communications has
not been proposed before.

Languages for structured communication and CCP process calculi are concep-
tually very different. We have dealt with some of these differences (notably, de-
terminacy) when stating an operational correspondence property for the declarative
interpretation of HVK processes. We believe there are at least two ways of achiev-
ing more satisfactory notions of operational correspondence. The first one involves
considering extensions of utcc with (forms of) non-determinism. This would allow to
capture some scenarios of session establishment in which the operational correspon-
dence presented here falls short. The main consequence of adding non-determinism
to utcc is that the correspondence with FLTL as stated in Theorem 3.2.6 would not
longer hold. This is mainly because non-deterministic choices cannot be faithfully
represented as logical disjunctions (see, e.g., [Nielsen et al. 2002]). While a non-
deterministic extension to tcc with a tight connection with temporal logic has been
developed (ntcc [Nielsen et al. 2002]), it does not provide for representations of mo-
bile links. Exploring whether there exists a CCP language between ntcc and utcc
combining both non-determinism and mobility while providing logic-based reasoning
techniques is interesting on its own and appears challenging. The second approach
consists in defining a type system for HVK and HVKT processes better suited to the
nature of utcc processes. This would imply enriching the original type system in
[Honda et al. 1998] with e.g., stronger typing rules for dealing with session establish-
ment. The definition of such a type system is delicate and needs care, as one would
not like to rule out too many processes as a result of too stringent typing rules. An
advantage of a type system “tuned" in this way is that one could aim at obtaining
a correspondence between well-typed processes and logic formulas, similarly as the

3.5. Concluding Remarks 77

given by Theorem 3.2.6. In these lines, plans for future work include the investigation
of effective mechanisms for the seamless integration of new type disciplines and rea-
soning techniques based on temporal logic within the elegant framework provided
by (timed) CCP languages.

The timed extension to HVK presented here includes notions of time that involve
only session engagement processes. A further extension could involve the inclusion of
time constraints over input/output actions. Such an extension might be useful to real-
istically specify scenarios in which factors such as, e.g, network traffic and long-lived
transactions, prevent interactions between services from occurring instantaneously.
Properties of interest in this case could include, for instance, the guarantee that a
given interaction has been fired at a valid time, or that the nested composition of
services does not violate a certain time frame. We plan to explore case studies of
structured communications involving this kind of timed behaviour, and extend/adjust
HVKT accordingly.

Acknowledgments. We are grateful to Marco Carbone and Thomas Hildebrandt for
insightful discussions on the topics of this paper. We also grateful to Roberto Zunino
who provided useful remarks on a previous version of this document.

Chapter 4

Types for Security and Mobility in
Universal CCP

Abstract: The fundamental primitives of Concurrent Constraint Programming (CCP),
tell and ask, respectively adds knowledge to and infers knowledge from a shared
constraint store. These features, and the elegant use of the constraint system to
represent the abilities of attackers, make concurrent constraint programming and
timed CCP (tcc) interesting candidates for modelling and reasoning about security
protocols. However, they lack primitives for the communication of secrets (or local
names as in the π-calculus) between agents. The recently proposed universal tcc
(utcc) introduces a universally quantified ask operation that makes it possible to
infer knowledge which is local to other agents. However, it allows agents to guess
knowledge even if it is encrypted or communicated on secret channels, simply by
quantifying over both the encryption key (or channel) and the message
simultaneously. We present a secure utcc (utcc�) based on: (i) a simple type system
for constraints allowing to distinguish between restricted (secure) and
non-restricted (universally quantifiable) variables in constraints, and (ii) a
generalisation of the universally quantified ask operation to allow the assumption of
local knowledge. We illustrate the use of the utcc� calculus with examples on
communication of local names (as in the π-calculus) and for giving semantics to
secure pattern matching in a prototypical security language.

Contents
4.1 Introduction . 80
4.2 Preliminaries . 81
4.3 utcc and Secure Pattern Matching . 84

4.3.1 Motivating a refined universal abstraction in utcc 84

4.3.2 Types for secure abstraction patterns in utcc 85

4.4 Applications . 92
4.4.1 Mobility & Access Control . 92

4.4.2 Security Protocols . 93

4.5 Discussion and Future Work . 97
4.5.1 Further comments on Secrecy . 98

4.5.2 Future Work . 99

80 Chapter 4. Types for Security and Mobility in Universal CCP

4.1 Introduction

A number of variants of process calculi and logical approaches have been proposed
for the analysis of security protocols, including [Abadi & Gordon 1999, Crazzolara &
Winskel 2001, Corin & Etalle 2002, Fiore & Abadi 2001, Blanchet 2001, Miller 2003,
Buchholtz et al. 2004, Olarte & Valencia 2008a]. The approaches have generally two
features in common: The first is the use of some kind of logical inference/pattern
matching/unification to represent the ability of attackers and principals to infer what
has been communicated, and from that knowledge construct new messages. The
second is a way of representing and communicating local knowledge (such as keys
or nonces in security protocols).

The combination of these two features calls for some means to control the ability
to infer knowledge which is supposed to be inaccessible, e.g. a message encrypted
by a key unknown to the attacker or the key itself. Typically, this takes the form
of a restriction on the rules for inference of knowledge/pattern matching, designed
particularly for the considered setting of security protocols. Sometimes the restriction
is enforced by the language, as e.g. in [Buchholtz et al. 2004], however in many cases
the restriction must be maintained in the specification of the attacker and the protocol
under analysis.

In the present paper we propose a more general solution to representing this kind
of restriction. Even though we believe that the solution is broadly applicable, in this
paper we focus on the setting of concurrent constraint programming (CCP). This is
due to the fact that our work was directly triggered by the interesting recent proposal
of the calculus of universal timed concurrent constraint programming (utcc)[Olarte &
Valencia 2008a], which extends timed concurrent constraint programming [Saraswat
et al. 1994] to include a universally quantified abstraction (ask) operation. Intuitively,
the new operation added in utcc, written (λ �� ; c) P , spans a copy of the residual
process P [��/��] for all possible inferences of c[��/��]. This adds the ability to extend
the scope of local knowledge which is not possible in CCP [López et al. 2006]. In
particular it was illustrated in [Olarte & Valencia 2008a] how to model a notion of
link mobility as found in the pi-calculus and to use the universal abstraction operator
for communication of messages in security protocols.

However, the universal quantification in utcc is completely unrestricted. This
means that in the proposed representations of link mobility and security protocols
in utcc, every agent may guess channel names and encrypted values by universal
quantification. It is thus necessary to enforce a restriction on the allowed processes
to make sure that this is not possible.

As a general solution for making exactly such restrictions, we propose a simple
type system for constraints used as patterns in abstractions, which essentially allow
to distinguish between universally abstractable and secure variables in predicates.
We also propose a novel notion of abstraction under local knowledge, which gives
a general way to model that a process (principal) knows a key and can use it to
decrypt a message encrypted with this key without revealing the key.

We exemplify the type system on πcalculus-like mobility of local names and

4.2. Preliminaries 81

for giving semantics to a novel security protocol language called Security Protocol
Concurrent Constraint Programming language (SPCCP), combining the best features
of the the Security CCP (SCCP) language proposed by Olarte and Valencia [Olarte
& Valencia 2008a] and the Security Protocol Language (SPL) by Crazzolara and
Winskel [Crazzolara & Winskel 2001].

The foregoing document is divided as follows: Section 4.3 introduces the type
system for utcc the new abstraction rule over local knowledge, as well as termination
and subject-reduction results over the type system proposed. In Section 4.4 we give
more details on the use of the utcc with secure patterns. Finally, concluding remarks
and future work are described in Section 4.5.

4.2 Preliminaries

This section provides the interested reader the main concepts of Temporal Concur-
rent Constraint Programming (tcc) and its universal extension (utcc), following the
presentation of [Olarte & Valencia 2008a].

In CCP-based calculi all the (partial) information is monotonically accumulated
in a so-called store. The store keeps the knowledge about the system in terms
of constraints, or statements defining the possible values a variable can take (e.g.,
� + � ≥ 42). Concurrent agents (i.e., processes) that are part of the system interact
with each other using the store as a shared communication medium. They have two
basic capabilities over the store, represented by tell and ask operations. While the
former adds a piece of information about the system, the latter queries the store to
determine if some piece of information can be inferred from its current content. Tell
operations can act concurrently refining the information in the store while asks can
serve as a general synchronisation mechanism, that will be blocked if there is not
enough information into the store to answer its query.

A fundamental notion in CCP-based calculi is that of a constraint system. Ba-
sically, a constraint system provides a signature from which syntactically denotable
objects in the language called constraints can be constructed, and an entailment
relation (�) specifying interdependencies among such constraints. More precisely,

Definition 4.2.1 (Constraint System). A constraint system is a pair CS = (Σ� ∆)
where Σ is a signature of function (F) and predicate (P) symbols, and ∆ is a decid-
able theory over Σ (i.e., a decidable set of sentences over Σ with at least one model).
The underlying language � of (Σ� ∆) contains the symbols ¬� ∧� ⇒� ∃ denoting logical
negation, conjunction, implication, existential quantification. Constants, such as true
and false denote the usual always true and always false values, respectively. Con-
straints, denoted by c� d� � � � are first-order formulae over �. We say that c entails d
in ∆, written c �∆ d (or just c � d when no confusion arises), if c ⇒ d is true in all
models of ∆. For operational reasons we shall require � to be decidable.

tcc arises as the extension of CCP for timed-systems: Including the notion of
discrete time intervals (time units), a computation can be described as the interaction

82 Chapter 4. Types for Security and Mobility in Universal CCP

of a tcc process with the environment: At the instant � a tcc process P receives the
store c as an initial stimulus, and when it reaches a quiescent point, it outputs d as
the resulting constraint store with a residual process Q that will be executed in the
instant �+1. Here it is where one of the most important differences between ccp and
tcc resides, as whilst the refinement of c during the execution of P at � is monotonic,
d is not necessarily a refinement of c (that is, constraints can be forgotten).

Definition 4.2.2 (tcc process syntax). Processes P� Q� � � � ∈ P��� are built from
constraints � ∈ � and variables � ∈ � in the underlying constraint system by the
following syntax.

P� Q � � � ::= skip
| tell (c)
| when c do P
| P

n
Q

| (local�� ; �)P
| next (P)
| unless � next (P)
| !P

Intuitively, the process skip does nothing, tell (c) adds a new constraint c into
the store, while when c do P asks if c is present into the store in order to execute
P . (local �� ; �)P binds a set of variables �� in P by defining their existence under
the constraint c. The operators associated with time allow the process to go one
time unit in the future (next (P)) or to define time-outs: if at the current time unit
it is not possible to entail the constraint c then the process unless c next P will
execute P at the next time unit. We will often use next� (P) as a shorter version of
next (next (� � � next (P))) n-times. Finally, P

f
Q denotes the usual parallel execution

and !P denotes timed replication; that is, !P = P
f

next (!P) executes P at the current
time and replicates its behaviour over the next time period.

utcc [Olarte & Valencia 2008a] is an extension of the tcc calculus with a gen-
eral ask defining a model of synchronisation. While in tcc an ask when c do P is
blocked if there is not enough information to entail � from the store, utcc inspires
its synchronisation mechanism on the notion of abstraction in functional program-
ming languages. (λ �� ; c) P can be seen as the dual version of (local �� ; c) P in which
the variables are abstracted with respect to the constraint c and the process P . The
operational semantics provides the intuitions on how utcc processes interact. In prin-
ciple, a configuration is represented by the tuple �P� c� where P denotes a set of
processes and c a constraint store. P can evolve to a further process P � during an
internal transition (→) where the constraint store c is monotonically refined, or can
execute an observable transition (=⇒), producing the result of the future function of
P and the constraint store d. The set of operational rules is presented in Figure 4.1,
where �P� c� denotes a configuration, and F (P) denotes the future function of P .

4.2. Preliminaries 83

RT

�tell (d)� c� −→ �skip� c ∧ d�

RP
�P� c� −→ �P �� c��

�P
f

Q� c� −→ �P � f Q� c��

RS
γ�

1 −→ γ�
2

γ1 −→ γ2

if γ1 ≡ γ�
1�

γ2 ≡ γ�
2

RR

�!P� c� −→ �P
f

next (!P)� c�

RU
� � �

�unless c next P� d� −→ �skip� d�

RL
�P� (∃x̃d) ∧ c� −→ �P �� (∃x̃d) ∧ c��

�(local �� ; c) P� d� −→ �(local �� ; c�) P �� (∃x̃c�) ∧ d�

RA
� � �[��/��] |��| = |��|

�(λ �� ; c) P� d� −→ �P [��/��]
f
(λ �� ; c ∧ (x̃ �= t̃)) P� d�

RO
�P� c� −→∗ �Q� d� �−→

P
(���)

======⇒ F (Q)

Where F (Q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

skip if Q = skip
F (Q1)

f
F (Q2) if Q = Q1

f
Q2

R if Q = next (R)
skip if Q = (λ �� ; c) R
(local��) F (R) if Q = (local �� ; c) R
R if Q = unless c next R

Figure 4.1: Transition System for utcc: Internal and Observable transitions

Definition 4.2.3 (Structural Congruence). Structural congruence (denoted by ≡) is
defined for utcc by the axioms:

(i) P ≡ Q if they are α-equivalent.

(ii) P
f

skip ≡ P .

(iii) P
f

Q ≡ Q
f

P .

(iv) P
f
(Q

f
R) ≡ (P

f
Q)

f
R .

(v) (local �� ; c) skip ≡ skip.

(vi) P
f
(local �� ; c) Q ≡ (local �� ; c) (P

f
Q) if �� �∈ � � (P)�

(vii) �P� �� ≡ �Q� �� iff P ≡ Q. and

(viii) next (P
f

next (Q)) ≡ next (P)
f

next2 (Q).

84 Chapter 4. Types for Security and Mobility in Universal CCP

Intuitively, the operational rules of utcc behaves almost in the same way as
its counterpart in tcc, excepting by the general treatment of asks in utcc. Here
we will describe the operational consequence of this change, we refer to [Olarte &
Valencia 2008a] for further details on the operational semantics. Rule RA describes
the behaviour of the abstraction (λ �� ; c) P : a configuration here considers two stores,
being c and d local and global stores respectively. If d entails c[̃t/x̃] then P [��/��]
is executed. Moreover, the abstraction persists in time, allowing any other process
to match with �� in P while no other replacements of �� with �� will occur, as d is
augmented with a constraint disallowing this. The notion of local information can be
evidenced in RL, considering a process P = (local �� ; c) Q, we have to consider: (i)
that the information about �� locally for P subsumes any other information present for
the same set of variables in the global store; therefore, �� is hidden by the use of an
existential quantifier over x̃ in d. (ii) that the information about �� that P can produce
after the reduction is still local, so we hide it by existentially quantifying �� in c� before
publishing it to the global store. After the reduction, c� will be the new local store of
the evolution of internal processes. Finally, observable behaviour is described by Ro:
after having used the internal transitions in a process P to evolve to a process Q with
a quiescent-point (in which no more information can be added/inferred), the reduction
will continue by executing the future function of Q with the resulting constraint store.

We will use the following auxiliar lemmas further on in our proofs:

Lemma 4.2.4. ∀Q� ∃d such that �Q� d� �−→ then F (Q) is defined.

Proof. The proof proceeds by induction on the structure of Q and the definition of
−→ and F (Q).

Lemma 4.2.5 (Monotonicity). ∀P� c; ∃Q� d such that �P� c� −→∗ �Q� d� �−→ and d � c.

Proof. The proof proceeds by induction on the length of the inference of −→ as
defined in Figure 4.1.

4.3 utcc and Secure Pattern Matching

As described in Section 4.2, one of the main advantages of utcc with respect to
tcc is that the universal abstraction operator allows for substitution of constraints
for variables in processes. The extension has been proposed for the treatment of
mobile links as present in the π-calculus [Milner et al. 1992] and pattern matching
in modelling of security protocols. Below we will give two motivating examples for
why a more refined abstraction operator is needed for modelling mobile local links
and secret keys.

4.3.1 Motivating a refined universal abstraction in utcc

Our first example refers to the πcalculus-like mobility of local links. Consider the
common scenario where a process P sends a request to a service offered by a process

4.3. utcc and Secure Pattern Matching 85

Q and includes in the request a local link on which it expects the reply. This can
be modelled in utcc using a constraint system CS = (Σ� ∆) where Σ includes the
predicates req, rep, and res, and the constant 0. The processes P and Q are defined
as

P = (local �)
�
tell (req(z))

n
(λ �; rep(z� y)) next (tell (res(y)))

�

and
Q = (λ � ; req(x)) tell (rep(x� 0))

The predicates req and rep are used for the request and reply respectively, and
the predicate res is used to report the result (and successful termination of P). The
local operator is used to create a local variable � representing the local link.

The intention is that only the processes P and Q can synchronise via the local
link � . However, the generality of abstraction in utcc makes it possible to violate this
intention: Another process E = (λ �� �; rep(x� y)) skip in parallel with the processes
P and Q given above would be able to guess the link � (as well as the result) from
the reply.

It is instructive to see how this could be avoided using the π-calculus, where the
two processes could be modelled by

P = (ν�)
�
req���

n
�����res���

�
and Q = req(�)� ��0�

In this case, the � and � are used differently in receiving the reply: The � is used
as the communication channel and � is the binder for the received name. Another
process in parallel would not be able to guess the channel � . As we will see below,
our proposed type system for patterns allows to introduce this kind of distinction
between the uses of variables in predicates.

Our second motivating example is from modelling of security protocols, where
as pointed out in [Buchholtz et al. 2004] it it should be impossible for an agent to
abstract variables if a one-way function has been applied to it. Consider a unary
predicate o (used for output of messages to the network) and an encryption function
enc(m� k) which represents the encryption of the variable � with the key � . A process
P that sends out a local message � encrypted by a local key � can be represented
by P = (local �� �) tell (o(enc(n� k))). However, in utcc a spy process defined as
S = (λ �� �; o(enc(x� z))) tell (o(x) ∧ o(z))� will succeed in retrieving and publishing
both the key and the encrypted message.

As for the π-like channels, our proposed type system for patterns will allow us
to rule out universal abstraction of variables to which a one-way function has been
applied. Further, to be able to allow abstraction of the message when the key is
locally known, we propose a novel kind of abstraction assuming local knowledge,
which generalises the universal abstraction of utcc.

4.3.2 Types for secure abstraction patterns in utcc

Based on the two motivating examples above, we argue that there are basically two
sorts of arguments in functions and predicates: the ones that can be universally

86 Chapter 4. Types for Security and Mobility in Universal CCP

quantifiable, which means that one would be able to use the abstraction operator for
a variable in that argument in order to find a possible matching, and the ones that
are not.

We will thus divide the arguments of predicates and functions in two sorts and
write P(̃t; t̃�) and f (̃t; t̃�) for respectively the predicate P and function f where both ��
and ��� are tuples of terms over the function signature F, and �� denotes the restricted
arguments and ��� the unrestricted ones. We assume that both arguments of the
equality predicate are restricted. If a predicate or function has either only restricted
or unrestricted parameters and the sort is clear from the context, we will simply write
P(̃t) and f (̃t).

The sorted predicates allow us to use a binary predicate piout(x; y) representing
the π-like communication of y (the object) on the channel x (the subject). By defining
that the subject is a restricted argument and the object an unrestricted argument
we obtain the required asymmetry in the roles of the variables. The type rules for
patterns should then forbid the abstraction (λ � ; piout(x� y)) P , as it would allow us to
identify all channels (also channels not known to us) containing a particular message
�. However, they should allow the abstraction (λ �; piout(x� y)) P , reflecting that we
can compute the possible messages on a channel � known to us. That is, we want to
capture that if we know the values of the restricted variables, then we may abstract
(i.e. compute all possible matches for) the unrestricted variables.

Similarly, sorted functions allow us to represent semantically that some functions
are one-way functions such as the function enc(k� m) described above for encrypting
the message m by the key k. Sorting both arguments as restricted will ensure
that e.g. the abstractions (λ �� ; o(enc(k� m))) P will be forbidden for any non-empty
�� ⊆ {k� m} Thus, even if the single argument of the o predicate is unrestricted (i.e.
we can abstract all messages available on the network) then we can not compute
the inverse of the encryption function. We may have functions for which an inverse
is assumed to exist, such as a function tup2(x� y) for making a pair of x and y. In that
case it makes sense to allow abstractions over the two arguments by sorting them
as unrestricted.

In general, patterns may be a conjunction of several predicates and thus variables
may occur both restricted and unrestricted in the same pattern. An example of this
is the abstraction (λ �� �; c) P , where c = piout(y� z) ∧ piout(x� y). We argue that
this pattern should be allowed, since it is possible first to match the unrestricted
� in piout(x� y) and then subsequently, for the given �, match the unrestricted � in
piout(y� z). Note that it is not enough simply to require the abstracted variables to
occur unrestricted: Both variables � and � appear unrestricted in the abstraction
(λ �� �; piout(x� y) ∧ piout(y� x)) P , but neither of the two basic constraints can be
matched without abstracting a restricted variable. As solution we define a set of
type rules for constraints used as patterns in abstractions which capture that there
exists an order of the basic constraints in which the first occurrence of each variable
is unrestricted.

To allow abstractions in cases where the inverse key of the encryption is known
we add a new rule RA→ given in Equation 4.1 in addition to the SOS rules pictured

4.3. utcc and Secure Pattern Matching 87

Tpred

ΓR ; ΓU � P(��;���) : ���
ΓR = ���(��) ∪ ���(���) and ΓU = ���(���)\ΓR

Tassoc
Γ � c1 ∧ (c2 ∧ c3) : ���
Γ � (c1 ∧ c2) ∧ c3 : ���

Tcommute
Γ � c1 ∧ c2 : ���
Γ � c2 ∧ c1 : ���

Tcomb
ΓR

1 ; ΓU
1 � c1 : ��� ΓR

2 ; ΓU
2 � c2 : ���

ΓR ; ΓU � c1 ∧ c2 : ���

ΓR = (ΓR
1 ∪ ΓR

2)\ΓU
1 and

ΓU = (ΓU
1 ∪ ΓU

2)\ΓR
1

Tskip

� skip : ���

Ttell

� tell (c) : ���

Tbang
� P : ���
� !P : ���

Tpar
� P : ��� � Q : ���

� P
f

Q : ���

Tnext
� P : ���

� next (P) : ���

Tloc
� P : ���

� (local �� ; c) P : ���

Tunls
� P : ���

� unless c next P : ���

Tabs
� P : ��� ΓR ; ΓU � c : ���
� (λ �� ; d =⇒ c) P : ���

�� ⊆ ���(ΓU)\� � (�)

Figure 4.2: Typing rules for secure patterns and processes

in Figure 4.1. RA→ allows for abstractions using constraints of the form c ⇒ c�, that
is, assuming local knowledge c and a global store d, one can infer c�. The idea is to
infer c� using c but without publishing it permanently to the store, as captured by
the following operational rule:

RA→
d ∧ c � c� [̃t/x̃] |̃t| = |x̃| d ∧ c � ff ⇒ d � ff

�(λ �� ; c ⇒ c�) P� d� −→ �P [��/��]
f
(λ �� ; c ⇒ (c� ∧ (x̃ �= t̃)) P� d�

(4.1)

The condition d ∧ c � ff ⇒ d � ff ensures that local assumptions do not make the
store inconsistent when combining with the constraint store.

The typing rules for secure patterns and processes are defined in Figure 4.2.
For simplicity we assume patterns are simply conjunction of predicates applied to

88 Chapter 4. Types for Security and Mobility in Universal CCP

terms over the function signature. The typing rules use an environment Γ = ΓR ; ΓU ,
where ΓR is the set of names used restricted and ΓU is the set of names used
unrestricted. When the distinction does not matter we simply write Γ. We employ
three inductively defined functions on terms over the function signature: ���(�), ���(�),
and ���(�) yielding respectively the variables appearing unrestricted in � according
to the sorting, the variables appearing restricted in � , and all variables appearing
in � . We extend the functions to vectors of terms by ���(��) = ∪1≤�≤|��|���(��) (and
similarly for ��� and ���). Formally, the functions are given by ���(�) = ���(�) =
���(�) = {�} for any variable � , and ���(� (��;���)) = ���(���), ���(� (��;���)) = ���(��), and
���(� (��;���)) = ���(��) ∪ ���(���). Note that obviously ���(�) = ���(�) ∪ ���(�) but also
that ���(�) ∩ ���(�) may be non-empty, i.e. a variable may appear both restricted
and non-restricted.

The rule TPred captures that all variables in �� as well as the variables occurring
restricted in ��� in the predicate P(��;���) are restricted. The rest of the variables are
unrestricted. The rules Tasoc and Tcommute allow us to change the ordering of the
basic constraints. Finally, the rule Tcomb identifies the restricted and unrestricted
variables in the joint pattern c1 ∧ c2 assuming that c1 is matched first. That is, a
variable is restricted if it appears restricted in either of the sub patterns c1 and c2
and not unrestricted in c1. (If it appears unrestricted in c1 it will be instantiated
if c1 is matched first, and thus it is allowed to appear restricted in c2). Dually,
the unrestricted variables in the joint pattern c1 ∧ c2 are the variables that appear
unrestricted in either of the sub patterns c1 and c2, and do not appear restricted in
c1.

The objective of the type system is to determine the secure patterns, therefore
typing rules over processes are rather simple. The only non-trivial rule is the rule
Tabs for abstractions, which ensure that c is a valid pattern such that the abstracted
variables are unrestricted, and no variables in the local d are abstracted.

Theorem 4.3.1 (Termination of type checking). For any process P the type-checking
process terminates.

Proof. (Sketch) Follows from the fact that there are only finitely many permutations
of basic constraints (predicates) in a pattern.

The following lemmas are used to prove subject reduction.

Lemma 4.3.2 (Constraint substitution does not affect pattern typing). Given ΓR ; ΓU �
c : ��� and � and � , then ΓR � ; ΓU � � c[�/�] : ��� and ΓU\ (� � (�) ∪ {�}) ⊆ ΓU �\ (� � (�) ∪ {�}).

Proof. The proof proceeds by induction on the type inference of ΓR ; ΓU � c : ����

• Case for c = P(̃t� t̃�): We have that ΓR =
�

���(��) ∪ �� (���)
�

; ΓU = �� (���)\
�

���(��) ∪ �� (���)
�

.

If � �∈ � � (c) then c[t/x] = c, ΓR � = ΓR and ΓU � = ΓU . Therefore, ΓR � ; ΓU � �
c[�/�] : ��� .
When ΓR � ; ΓU � � P(̃t� t̃�)[t/x] : ��� we have the following cases:

4.3. utcc and Secure Pattern Matching 89

– Case for � ∈ � � (c): We have to check the use of � over the set of
top variables of P(̃t� t̃�). If � ∈ �� (���) then ΓR � ; ΓU � � P(̃t� t̃�)[t/x] : ���
where ΓR � = ΓR ∪ (� � (�)\�� (�)) and ΓU � =

�
ΓU\{�}

�
∪ �� (�). Moreover,

ΓU\ (� � (�) ∪ {�}) = ΓU �\ (� � (�) ∪ {�})
– Case for � �∈ �� (���): Then ΓU � = �� (���) = ΓU and ΓR � = ΓR ∪ {� � (��)\�� (���)},

from TPred we get ΓR � ; ΓU � � c[�/�] : ��� . Then ΓU �\ (� � (�) ∪ {�}) = ΓU\ (� � (�) ∪ {�})
as ΓU = ΓU � .

• Case for c = c1 ∧ c2: Assume ΓR ; ΓU � c1 ∧ c2 : ���� We have to show that
ΓR � ; ΓU � � (c1 ∧ c2) [�/�] : ��� and ΓU\ (� � (�) ∪ {�}) ⊆ ΓU �\ (� � (�) ∪ {�}).

From the rule Tcomb it follows that ΓR
1 ; ΓU

1 � c1 : ��� and ΓR
2 ; ΓU

2 � c2 : ���
with ΓR =

�
ΓR

1 ∪ ΓR
2

�
\ΓU

1 and ΓU =
�
ΓU

1 ∪ ΓU
2

�
\ΓR

1 .

From the induction hypothesis we have that, for � ∈ {1� 2}, ΓR �
� ; ΓU �

� � ci[�/�] : ���
. Moreover,

ΓU
� \

�
� � (��) ∪ {�}

�
⊆ ΓU �

� \
�
� � (��) ∪ {�}

�
(4.2)

and
ΓR �

� ⊆ ΓR
� ∪ � � (��) (4.3)

It follows from Tcomb that ΓR � ; ΓU � � c1[�/�] ∧ c2[�/�] : ��� for ΓR � = (ΓR �
1 ∪

ΓR �
2)\ΓU �

1 and ΓU � = (ΓU �
1 ∪ ΓU �

2)\ΓR �
1 .

We must show that

ΓU\ (� � (�) ∪ {�}) ⊆ ΓU �\ (� � (�) ∪ {�}) (4.4)

Substituting ΓU by its respective definition it follows that
��

ΓU
1 ∪ ΓU

2

�
\ΓR

1

�
\ (� � (�) ∪ {�}) ⊆ ((ΓU �

1 ∪ ΓU �
2)\ΓR �

1)\ (� � (�) ∪ {�}) (4.5)

Which holds by substituting ΓU and ΓU � by their definitions and using equations
4.2 and 4.3.

Lemma 4.3.3 (Constraint substitution does not affect process typing). Given a typ-
ing judgment � P � : ��� then � P �[�/�] : ����

Proof. The proof proceeds by induction on the type inference of � P � : ���

• Base case, rule Tskip: Let P � = skip and ���(P �) = ∅, then P �[�/�] : ��� trivially.

• Base case, rule Ttell: Let P � = tell (c) and ���(P �) = ∅, then P �[�/�] = tell (c[t/x]),
and applying Ttell it follows that tell (c[t/x]) : ���.

90 Chapter 4. Types for Security and Mobility in Universal CCP

• Inductive step, rule Tpar: Let P � = P
f

Q, and � P
f

Q : ���� We have to
show that � P [�/�]

f
Q[�/�] : ��� . From Tpar it follows that � P : ��� and

� Q : ���. Moreover, from the Induction hypothesis we have that � P [�/�] : ���
and � Q[�/�] : ���. It follows from Tpar that � P [�/�]

f
Q[�/�] : ��� .

• Inductive steps: rules Tnext� Tunls� Tloc: We proceed similarly as for Tpar.

• Inductive step: rule Tabs: Let P � = (λ � ; d ⇒ c) P and � (λ � ; d ⇒ c) P : ����
we have to show that � (λ � ; d ⇒ c[t/x]) P [�/�] : ���� From Tabs it follows that
� P : ��� and ΓR ; ΓU � c : ��� for �� � ⊆ ���(ΓU)\� � (d). From the induction
hypothesis we have that � P [�/�] : ��� and from lemma 4.3.2 we have that
ΓR � ; ΓU � � c[t/x] : ��� with �� � ⊆ ���(ΓU)\� � (d) ⊆ ���(ΓU �)\(� � (d) ∪ {�}). From
the application of Tabs it follows that � (λ � ; d ⇒ c[t/x]) P [�/�] : ���� which is
what we had to prove.

Lemma 4.3.4 (Structural equivalence preserves typing). Given P� Q processes, if
P ≡ Q and � P : ��� , then � Q : ����

Proof. The proof proceeds by trivial case analysis over the structural congruence
rules in Definition 4.2.3.

Next we check that secure processes can not be made insecure during an internal
transition step.

Lemma 4.3.5. If �P� c� −→ �Q� d� and � P : ��� , then � Q : ����

Proof. The proof proceeds by induction on the depth of the inference �P� c� −→ �Q� d�
and using the definition of � P : ����

• Base case, rule RT: Let P = tell (d�), Q = skip and d = c ∧ d�. We want to
show that if � P : ��� then � Q : ��� , which follows trivially from Tskip.

• Base case, rule RU: Let P = unless c� next P and Q = skip and d = c. If
� P : ��� we must show that � Q : ��� , which follows from Tskip.

• Inductive case, rule RR: Let P =!P � and Q = P � f next (!P �) and d = c. From
the induction hypothesis we get � P � : ���� Using Tbang and � !P � : ��� we
get � P � : ���� Similarly, from Tnext and � !P � : ��� we get � next (!P � : ���)�
Finally, from Tabs we get � P � f next (!P �) : ����

• Inductive case, rule RL: Let P = (local � ; c�) P � and Q = (local � ; c��) P �� and
d = (∃x; c��) ∧ c. We assume that � P � : ���� and by inductive hypothesis then
� P �� : ���� We have to show that � (local � ; c��) P �� : ���� which follows from
the application of Tloc and � P �� : ����

4.3. utcc and Secure Pattern Matching 91

• Inductive case, rule RS: we have that γ1 = �P1� C1� and γ2 = �Q� ��. We assume
that for γ�

1 = �P �
1� c�

1�, � P �
1 : ��� , then from the inductive hypothesis we get

γ�
2 = �P �

2� c�
2�, such that � P �

2 : ���� We have to show that if � P1 : ���� then
there is a γ2 = �Q� d� such that � Q : ���� which follows from lemma 4.3.4.

• Inductive case, rule RA→: Let P = (λ �� ; c ⇒ c�) P � and
Q = P �[��/��]

f
(λ �� ; c ⇒ (c� ∧ (x̃ �= t̃))) P � and d = c. We assume that � P � : ���

and ΓR ; ΓU � c� : ��� and � ⊆ ���(ΓU)\� � (c). We have to show that

� P �[��/��]
n
(λ �� ; c ⇒ (c� ∧ (x̃ �= t̃))) P � : ��� (4.6)

such that �� ⊆ ���(ΓU �)\� � (c).
From Tpred we get that ΓR �� ; ΓU �� � �� �= �� : ��� where inequality can be seen
as a predicate between two set of variables and ΓR �� = {��} ∪ ���(��); ΓU �� = ∅.
Using the assumption ΓR ; ΓU � c� : ��� and ΓR �� ; ΓU �� � �� �= �� : ��� with Tcomb
we get

ΓR � ; ΓU � � c� ∧ x̃ �= t̃ : ��� (4.7)

with ΓR � =
�
ΓR ∪ {��} ∪ ���(��)

�
\ΓU and ΓU � = ΓU\ΓR = ΓU . Moreover, �� ⊆

���(ΓU �)\� � (c) as �� ⊆ ���(ΓU)\� � (c).
From the assumption we have that � P � : ��� and applying lemma 4.3.3 it
follows that � P �[��/��] : ��� , Finally, from this last result together with equation
4.7 and Tabs we can derive
� P �[��/��]

f
(λ �� ; c ⇒ (c� ∧ (x̃ �= t̃))) P � : ��� , which exactly the same as Equation

4.6, hence we are done.

Finally, we show that if a process P is well-typed, it can not perform any internal
steps, and its future is defined then the future of P is also well-typed.

Lemma 4.3.6. For all � P : ���, if F (P) is defined and ∃d��P� d� �−→ then � F (P) :
���.

Proof. The proof proceed by induction in the definition of F (P).

• Base case, P = unless c� next P �: we have that � unless c� next P � : ���. By
Tunls we get � P � : ���, and as F (unless c� next P �) = P �, then � F (P) : ���.
This case is similar for P = next (P �).

• Inductive case, P = P1
f

P2: we have that � (P1
f

P2) : ���. Then by Tpar
we get that for � = {1� 2}, then � P� : ���. By lemma 4.2.4 we have that
for P�, F (P�) is defined. We assume F (P�) = P �

� and � P �
� : ���. We have

that F (P1
f

P2) = P �
1
f

P �
2 and by Tpar and the inductive hypothesis we get that

� (P �
1
f

P �
2) : ���, then � F (P) : ���.

92 Chapter 4. Types for Security and Mobility in Universal CCP

• Inductive case, P = (local � ; c�) P �:, we have that � (local � ; c�) P � : ���. As-
suming F (P �) = P �� is defined and � P �� : ��� then by Tloc, and the inductive
hypothesis, we get that � (local � ; c�) P �� : ���, then � (local � ; c�) F (P �) : ���.

We now have all the ingredients to prove subject reduction.

Theorem 4.3.7 (Subject-reduction). If P
(���)

======⇒ Q and � P : ��� , then � Q : ��� .

Proof. Assume P
(���)

======⇒ Q and � P : ���, then by rule Ro we get that �P� c� −→�

�Q�� d� �−→ and Q = F (Q�). We proceed by induction in �.
In the base case where � = 0, we have that Q� = P and c = d. It follows from

lemma 4.3.6 that � F (Q�) : ���.
For the induction step, assume �P� c� −→1 �P �� c�� −→� �Q�� d� �−→. Then � P � :

��� by lemma 4.3.5 and thus we get by induction that � F (Q�) : ���.

4.4 Applications

This section illustrates the use of the type system with some examples in mobility
and security.

4.4.1 Mobility & Access Control

First, let us return to the π-calculus example. We assume the syntactic sugar ����
stands for the binary predicate piout(x; y) and represents the use of the (restricted)
channel � with the (unrestricted) message �. The following type inference shows
that we can quantify over either � or � for the pattern ���� ∧ ����:

� ; � � ���� : ��� Tpred �; � � ���� : ��� Tpred

� ; � � ���� ∧ ���� : ��� Tcomb

The way to read the first inference is that we can abstract � if we know � .
Conversely, a second inference from the same pattern can lead to a typing of the
form �; � � ���� ∧ ���� : ���

�; � � ���� : ��� Tpred � ; � � ���� : ��� Tpred

�; � � ���� ∧ ���� : ��� Tcomb

capturing the fact that one can abstract � if we know �. However, note that we can
not infer ε; �� � � ���� ∧ ���� : ��� , and thus we are not allowed to simultaneously
quantify over � and �.

4.4. Applications 93

It is interesting to note the resemblance of the type environments and type rules
herewith presented and classical definitions of information flow policies based on
lattice models [Bell & LaPadula 1973, Denning 1976, Biba 1977, Sandhu 1993]. The
unrestricted and restricted typing environments map to high and low security levels,
while the composition of the type rules given by Tpred and Tcomb allow for a flow
of data from high to low security clearances, just as the high-low lattice model in
[Sandhu 1993]. This is the same kind of behaviour exhibited in confidentiality policies,
like the one proposed by [Bell & LaPadula 1973], where data labelled with a high level
of confidentiality will decrease its level when composed with a minor confidentiality
level. We can see an example on how this works in the variable extrusion of the
process (λ �� �; y�x� ∧ x�z�) skip:

� skip : ��� Tskip
�; � � y�x� : ��� Tpred � ; � � x�z� : ��� Tpred

�; �� � � y�x� ∧ x�z� : ��� Tcomb

� (λ �� �; y�x� ∧ x�z�) skip : ��� Tabs

Here, the security label of channel � in ����, originally restricted (secret in nature)
gets decreased when it is composed with the communication ����. It is easy to
imagine that this type system could accommodate other security hierarchies used in
real life scenarios, such as Smith’s lattice based access control model for military
applications [Smith 1990].

4.4.2 Security Protocols

To illustrate the application of utcc� in the security domain, we follow the lines of the
Security Protocol Language (SPL) [Crazzolara & Winskel 2001] and SCCP [Olarte &
Valencia 2008b] to define a specification language for security protocols that we have
called the Security Protocol Concurrent Constraint Programming (SPCCP) language.
The SPCCP embeds utcc� in a syntax suitable for defining security protocols, cap-
turing process specifications with respect to input and output events over a global
network. The SPCCP language combines the best ideas from SPL and SCCP by hav-
ing a simple notion of pattern matching as in SPL and using the constraint system
to model the attackers ability to combine and split messages as in SCCP . Hereto
we add the new concept of pattern matching under local knowledge, which allow us
to syntactically guarantee that only message parts inferable from the available keys
are extracted, which can not be guaranteed in SPL nor in SCCP .

Definition 4.4.1 (SPCCP). The Secure Concurrent Constraint Programming language
SCCP [Olarte & Valencia 2008b] is redefined by the grammar in Figure 4.3, where ��
range over a set of variables and the subscript �� in in∀�� [N]�� �R is a set of keys.

We define the semantics of SPCCP by giving a translation into utcc� with a
security constraint system given by the signature Σ with a single (unrestricted)
unary predicate o(t) used for message output, function symbols F = {enc� pub� priv�

94 Chapter 4. Types for Security and Mobility in Universal CCP

Values v,v’ = �
| �

Keys k = ���(�)
| ���� (�)
| ���(�)

Messages and patterns M,N = �
| (M1� � � � � M�)
| {M}�

Processes R = nil
| local(�) in R
| out(M) �R
| in∀�� [N]�� �R
| !R
| R

f
R

Figure 4.3: SPCCP : Process syntax

sym� tupn}, and entailment relation given in Figure 4.4 inspired on the requirements
stated by Dolev and Yao in [Dolev & Yao 1981].

The binary function ��� takes two unrestricted arguments: a key and a message.
The key is intended to be either a symmetric, private, or public key generated by
the (restricted) unary functions ���(�), ���� (�), or ���(�) respectively. Letting k ∈
{���� ����� ���} and defining ���−1 = ���, and ���−1 = ���� , the entailment rule
scheme Ek−dec for decryption expresses how ��� acts as symmetric or asymmetric
encryption. The �-ary (unrestricted) tupling functions ���� allow to create �-ary
tuples, from which the individual elements can be projected as expressed by the
entailment rule Eproj. As usual, the rules Eenc� Ek−key, and Etupn express that the
output of any function of known output values can be inferred.

The messages/patterns of SPCCP are mapped to the terms generated by the
corresponding function symbols and variables in the security constraint system, using
the usual notation (M1� � � � � M�) for �-tuples and {M}� for enc(k� M). For a message
M of SPCCP let � (M) denote the set of variables in M . For a set of values �� =
{�1� �2� � � � � ��} let �(��) be short for �(�1)∧�(�2)∧ � � �∧�(��), and in particular �(∅) = tt.

We are now ready to define the encoding of SPCCP in utcc� �

Definition 4.4.2 (SPCCP encoding). Let [[·]]utcc be the mapping from SPCCP to utcc�
processes, given by:

4.4. Applications 95

Ek−dec
c � o(k−1(x)) c � o(enc(k(x)� m))

c � o(m)

for k ∈ {���� ���}� ���−1 = ����
and ���−1 = ����

Eenc
c � o(x) c � o(y)

c � o(enc(x� y))

Ek−key
c � o(x)

c � o(k(x))
, for k ∈ {���� ���� ����}

Etupn
c � o(i1) � � � c � o(in)

c � o(tupn(i1� � � � � in))

Eproj
c � o(tupn(i1� � � � � in))

c � o(ij)
� ∈ {1� � � � � �}

Figure 4.4: Entailment relation for a security constraint system.

[[R]]utcc :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

skip if R = nil
(local �) [[R �]]utcc if R = local(�) in R �

tell (o(M))
f

next ([[R �]]utcc) if R = out(M) �R �

(λ �� ; o(k̃) ⇒ o(N) ∧ o(x̃)) next ([[R �]]utcc) if R = in∀�� [N]�� �R �

![[R �]]utcc if R =!R �

[[R �]]utcc
f
[[R ��]]utcc if R = R � f R ��

We will focus on outlining process constructions for pattern matching and network
output. The remaining process constructions are mapped directly to the correspond-
ing construct in utcc� : nil, R

f
R � and !R have the usual meaning of inaction, parallel

composition and replication in process calculi; out(M)� R adds the constraint o(M)
to the constraint store and subsequently in the next time period behaves as (the
encoding of) R .

SPCCP differs from SCCP in the treatment of keys and the input operation: priv(x),
pub(x), and sym(x) yields respectively the private, public and symmetric key from
generator � . The input operator written as in∀�� [N]�� �P should be read as “for all
possible messages �� (available under the assumption of knowing the keys ��) such
that N [��/��] is available as message at the network evolve into P [��/��]". Intuitively,
the idea is to check if �� is available as knowledge assuming locally that the keys
in �� are available as knowledge, and if so, bind the variables in P occurring in
the pattern N with the corresponding values in ��. The pattern matching resembles
the pattern matching construct in SPL. The key difference is that it proceed for all
possible matches, and that we employ the new rule for universal abstraction under
local knowledge introduced in the previous section to allow the use of private keys as
local information to perform the decryption of messages. Note that we also require
that all the abstracted values can be inferred as output. This guarantees that secret
values are not abstracted, and result in well-typeness of the encoding.

Proposition 4.4.3 (SPCCP maps to well-typed utcc� processes). For any SPCCP process
P , � [[P]]utcc : ���.

96 Chapter 4. Types for Security and Mobility in Universal CCP

(1) A → B : {�� A}���(B)
(2) B → A : {�� �� B}���(A)
(3) A → B : {�}���(B)

Figure 4.5: Needham-Schröeder-Lowe protocol with public-key encryption

I���(A� B� �A� �B) = new(�) out({�� A}�B)�
in∀� [{�� �� B}���(�A)]���� (�A)�
out({�}�B)� nil

R��(A� B� �B� �A) = in∀�[{�� A}���(�B)]���� (�B)�
new(�) out({�� �� B}�A)�
in∀[{�}���(�B)]���� (�B)�nil

S�����(A� B) = new(�A) new(�B) (I���(A� B� �A� ���(�B))f
R��(A� B� �B� ���(�A)))

Figure 4.6: NSL protocol in SPCCP

Proof. (Sketch) The proof proceeds by trivial induction on the definition of [[P]]utcc and
the typing rules in Figure 4.2

Example: Needham-Schröeder-Lowe with public-key encryption In Figure 4.5 we recall
the protocol steps of the Needham-Schröeder-Lowe protocol [Lowe 1995] (herewith
referred as NSL) used as example in [Crazzolara & Winskel 2001].

The NSL protocol describes the interaction between agents A and B. First A
sends to B a nonce along its agent name, encrypted with B’s public key. Then
B decrypts the message with his own private key extracting A’s nonce. Next, B
sends a message to A containing the proof of reception along with a fresh name
encrypted under A’s public key. Finally, A decrypts B’s message and sends to B the
name challenge received in the previous message encrypted with B’s public key. The
SPCCP version of the protocol is given in Figure 4.6.

SPCCP share some similarities with other languages for the description of se-
curity protocols, in particular with the approaches in LYSANS [Buchholtz et al. 2004],
SCCP , and the SPL calculus. Particularly, observe that there is no need to explicitly
define the communication channels in which agents are transmitting messages. The
underlying model acts as an open network in which every actor can access all the
messages posted provided that he has the proper keys to decrypt its the message.
We assume a disclosure of public keys for every agent, while the private keys are
kept secret for each principal. The key difference between the approach in SPCCP to
the approaches in SPL and SCCP is that the abstraction of the contents of a mes-
sage encrypted with a key is only allowed if one possesses the corresponding key
for decryption. This is similar to the approach in the LYSANS calculus, except that we

4.5. Discussion and Future Work 97

I���(A� B� �A� �B) =(local �) tell (o({�m� A�}pB)
n

next (((λ � ; o(priv(kA)) ⇒ (o({m� x� B}pub(kA)) ∧ o(x))))
n

next (tell (o({x}pubB))
n

next (skip)))

R��(A� B� �B� �A) =(λ �; o(priv(kB)) ⇒ (o({y� A}pub(kB)) ∧ o(y)))
n

next (((local �) tell (o({y� n� B}pA)))
n

next ((λ ∅; o(priv(kB)) ⇒ (o({n}pub(kB))))
n

next (skip)))

S�����(A� B) =(local �A) (local �B) I���(A� B� �A� ���(�B))
n

R��(A� B� �B� ���(�A))

Figure 4.7: NSL protocol: Translation into utcc�

employ the constraint system and local knowledge instead of tailoring the pattern
matching with a notion of key pairs. Figure 4.7 exemplifies the translation into utcc� .

4.5 Discussion and Future Work

We have illustrated that the introduction of universal quantification to CCP for mod-
elling mobile communication and security protocols introduce the problem that in-
formation which should be local can be obtained by universal quantification. As a
way to remedy the problems we have proposed a simple type system for constraints
used as patterns in abstractions which allows us to guarantee semantically that e.g.
channel names and encrypted values are only extracted by agents that are able to
infer the channel or non-encrypted value from the store. Furthermore, we proposed a
novel kind of abstraction allowing abstraction under the assumption of local knowl-
edge. The latter can be applied to infer the plain text of encrypted messages under
the assumption of knowledge of the key, without adding the key permanently to the
global store. We exemplified the type system by examples of mobility of local links
(in the context of the π-calculus) and provided a new language for security protocols
combining the key features of the Security CCP (SCCP) language and the SPL cal-
culus, but adding the ability to syntactically constraining the ability to decrypting
secret values inspired by the LYSANS calculus.

The present work is only in its first stage. However, we believe that the proposed
distinction between variables that can be universally quantified and variables that
can not is an elegant way to remedy the problems we have illustrated connected
to the universal quantification to CCP. A next step will be to perform a detailed
investigation of the proposed new variant of the SCCP calculus and applications to

98 Chapter 4. Types for Security and Mobility in Universal CCP

model security protocols. Here we delve into initial ideas for analysing security
attacks using SCCP .

4.5.1 Further comments on Secrecy

A secrecy property under utcc should consider the existence of an attacker with the
capabilities of previously defined in [Dolev & Yao 1981]. First of all, it is necessary to
provide a persistent network model, with the possibility of injecting noisy messages
when desired. This behaviour can be represented as:

N������ =!
�

new(�) out(�)� nilf
in∀N [M]�� (S�����)�out(N)� nil

�
(4.8)

In this model, the network can always create new noise and output for others. It
can also use the public knowledge of the system (the set of public session keys) along
with the security constraint system to decompose messages, and output the resulting
messages back to the environment. Along with the security constraint system given
in figure 4.4, and the definition of network model, an attacker will be able to use its
pattern matching capabilities along with the set of keys publicly available as well as
his own set of session keys in his search for a given message �, as defined below:

Definition 4.5.1 (Spy). A spy searching for key � in SPCCP is defined as the process

S��(�� �) =
�

N������
f

!in∀�[M]����(S��)∧�� (S�����)�out(�)� nil
�

(4.9)

Where ���� is the set of keys for a given agent and �� (S�����) the set of public
keys of the system.

The Spy in this way has prior knowledge of the kind � of message he is searching
for (not of his contents). After a successful decryption of � in the pattern M , he
will output a message acknowledging success similar to the tests in [De Nicola &
Hennessy 1984].

Formally, we will use the notion of input-output equivalences [Valencia 2002] in
order to describe an operational view of secrecy:

Definition 4.5.2 (Observable behaviour). Given α = c1�c2� � � � and α = c�
1�c�

2� � � �.

We write P
(α�α �)
======⇒ for P = P1 =

(�1���
1)

======⇒ P2
(�2���

2)
======⇒ � � � . The set ��(P) =

{(α� α �)|P
(α�α �)
======⇒} denotes the input-output behaviour of P . Two processes P and

Q are input-output equivalent (s��) if ��(P) = ��(Q). Moreover, we say that P even-

tually publishes c, written P ⇓ c, if P
(tt�α �)
======⇒ and α �(�) = c for some � ≥ 0. Finally,

we say that P discloses c�, written P ↓ c�, if P ⇓ c and c � c�.

Therefore, a security property can use the notion of equivalence presented above
to describe an attack. Intuitively, a security attack can be shown if a protocol specifi-
cation interacting with a network model is different than the same protocol interacting
with a spy, in the style of [Abadi & Gordon 1999]. In the case of secrecy, the security

4.5. Discussion and Future Work 99

property will be granted iff for any system plugged in parallel with a spy, there is
no attacks involving the leakage of a secret. Formally:

Definition 4.5.3 (Secrecy, operationally). Process P is defined to have a secrecy
attack under key � if ∃� s.t. P

f
N������ �s�� P

f
S��(�� �) and P

f
S��(�� �) ↓ �.

We can exploit the correspondence of utcc processes with linear temporal logic
formulae to specify security properties in a logical way. First lets recall the logical
correspondence definition in [Olarte & Valencia 2008a].

Theorem 4.5.4 (FLTL Characterisation and Logic Correspondence[Olarte & Valen-
cia 2008a]). Let [[·]] a map from utcc processes to FLTL formulae given by:

[[skip]] = tt
[[(λ �� ; c) P]] = ∀�� (c ⇒ [[P]])
[[(local �� ; c) P]] = ∃�� (c ∧ [[P]])
[[unless c next P]] = c ∨ ◦[[P]]

[[tell (c)]] = c
[[P

f
Q]] = [[P]] ∧ [[Q]]

[[next (P)]] = ◦[[P]]
[[!P]] = ⇤[[P]]

Moreover, If P is a well-terminated process and c a state formula then

P � �� iff P ⇓ c (4.10)

We can then reformulate a secrecy attack in terms of a temporal property, such
as:

Definition 4.5.5 (Secrecy, logically). A secrecy attack is shown to be present in a
process P under the secret � if ∃� ���� P ∧ S��(�� �) � ��.

Finally, we sketch a relation between the secrecy attack evidenced operationally
and the exhibition of a message using the logical equivalence. We conjecture that
P

f
N������ �s�� P

f
S��(�� �) iff P ∧ S��(�� �) � �� for any given �.

4.5.2 Future Work

It is important to remark the importance of the current proposal with respect to other
analysis techniques for security protocols. In [Blanchet 2001], a framework for the
analysis of secrecy properties is proposed with logic programming as its underlying
mechanism. The specification language follows the line of the equational theory pre-
sented in the Applied π-calculus [Abadi & Fournet 2001], encoding constructor and
destructor functions by means of deduction rules in the framework. Here, pattern-
matching is being used to encode the abilities of an attacker to abstract away infor-
mation from the facts present in the store. Given that the attacker can apply the set of
rules in a given specification, the correctness of the analysis relies on the power we
give on the inference system. For instance, a rule attacker(sign(m� sk)) → attacker(sk)
could be specified and the attacker would be able to extract away the secret key from
a signature. We believe that a type system similar to the one proposed in this paper
can be applied here to limit the extra expressive power of the rule-based approach by

100 Chapter 4. Types for Security and Mobility in Universal CCP

allowing only to abstract only variables over unrestricted parts of the predicates, rul-
ing out the example given above by declaring �� a restricted variable over sign(m� sk).
Similar considerations can be applied to other systems that base their analysis on
pattern-matching techniques, like the extended strand-space approach in [Corin &
Etalle 2002] and Miller’s linear logic approach for security protocols [Miller 2003].

As also pointed out in the text the local operator of utcc does not really correspond
to the generation of new names in nominal calculi. This has already been noticed
by Palamidessi et al. [Palamidessi et al. 2006], where a logical characterisation
of name restriction using the existential quantifier does not ensure uniqueness in
the fragment of the π-calculus with mismatch. The same occurs in utcc: a process
(local �) (local �) P can hide both � and � from the store, but the current logical
formulation does not ensure the uniqueness of � and �, as one may wish when dealing
with nonces for security protocols. We leave for future work to study variants of the
local operator ensuring uniqueness.

Acknowledgements The authors would like to thank the anonymous reviewers for
their suggestions for improvement of this paper. We would also like to thank Jorge A.
Pérez for his comments on earlier versions of this document. This research has been
partially supported by the Trustworthy Pervasive Healthcare Services (TrustCare)
project. Danish Research Agency, Grant # 2106-07-0019 (www.TrustCare.eu).

Chapter 5

Modal Logics for Structured
Communications

Abstract: We present a framework integrating imperative and declarative views for
structured communications. Starting from languages for the specification of services,
we provide a modal logic characterisation of the interactions occurring in a system,
both at a from a global standpoint and from the views of each participant. The
framework copes with two aims: exhibiting logical guarantees about the presence of
an interaction, and model generation from logical specifications1.

Contents
5.1 Introduction . 102

5.1.1 An Example . 103
5.2 The Global Calculus . 106

5.2.1 Syntax . 107
5.2.2 Semantics . 108
5.2.3 Session Types for the Global Calculus 111

5.3 �� : A Logic for the Global Calculus 113
5.3.1 Syntax . 113
5.3.2 Semantics . 116

5.4 Undecidability of Global Logic . 117
5.5 Proof System for �� . 119
5.6 End-Point Calculus . 124

5.6.1 Syntax . 124
5.6.2 Semantics . 125
5.6.3 Session Types for the End-Point Calculus 128
5.6.4 End Point Projection . 130

5.7 ��: A logic for End Points . 133
5.7.1 Examples of formulae in �� . 134
5.7.2 Semantics of �� . 134
5.7.3 Translation from �� to �� . 136
5.7.4 ��: Proof System . 139

5.8 Conclusion and Related Work . 142
1This work is an extended version of Chapter ??. In particular, sections 5.2 – 5.5 contain simplified

versions of the results in Chapter ??, and readers can refer to such chapter for its full explanation.

102 Chapter 5. Modal Logics for Structured Communications

Appendix 5.A Global Calculus: Reduction Semantics 144
Appendix 5.B Global Calculus: Typing Rules 144
Appendix 5.C End-Point Calculus: Reduction Semantics 144
Appendix 5.D End-Point Calculus: Typing rules 145
Appendix 5.E End Point Projection: Merging 147
Appendix 5.F End Point Projection: Thread Projection 148

5.1 Introduction

Given the intrinsic complexity when analysing services in distributed environments,
one normally use different abstractions to describe and analyse services. One of such
abstractions deals with the the study of the concurrent nature of services. Process
calculi are formal languages conceived for the description and analysis of concurrent
systems. As such, the goal of a process calculus is to provide a rigorous framework
where complex systems can be accurately analysed, including reasoning techniques
(e.g.: type systems, specification logics) to verify essential properties about their
behaviour. The term structured communications [Honda et al. 1998] refers to the
branch of process calculi devoted to the analysis of interactions between services.
On a calculus for structured communications, one considers the computation within
a service as an atomic activity, and focus the core of the analysis in the interactions
between services.

Despite of being such a young trend, different but interrelated views for the analy-
sis of service oriented systems have been proposed. We can enclose such approaches
in two dichotomies: global/local views of services, and imperative/declarative spec-
ifications. In the first dichotomy, either one describe the system as the exchange
of messages between different participants, or one consider the system as the com-
position of the local behaviours of each participant. In this first view, known as
choreography [Kavantzas et al. 2004], one considers the system as a whole, taking
care only of the interfaces that participants use when interacting to the outside world.
In the second view, known as orchestration [Misra & Cook 2006], one models the sys-
tem as perceived by the eyes of each participant (so-called end-point), sending and
receiving messages but not knowing which other actors are present in a communica-
tion. As recently presented [Carbone et al. 2007, Busi et al. 2006, Hongli et al. 2007],
choreographies and orchestrations have close ties to each other, and one can project
a choreography to generate distributed orchestrations that implements it, sometimes
referred as an end-point projection.

The second dichotomy here considered refers to the approach used to construct
the models. Descriptions can have imperative or declarative flavours: In an imperative
approach, one explicitly defines the control flow of commands. Typical representatives
of this approach are based on process calculi, and come with behavioural equivalences
and type disciplines as their main analytic tools [Puhlmann & Weske 2005, Lapadula

5.1. Introduction 103

et al. 2007a, Boreale et al. 2006, Honda et al. 1998, Vieira et al. 2008]. On the
contrary, in a declarative approach the focus drifts to the specification of the set of
constraints (causality relations, time constraints, quality of service) processes should
fulfil in order to be considered correct [Pesic & van der Aalst 2006, van der Aalst
& Pesic 2006, Lyng et al. 2008, Nørgaard et al. 2005]. Even if these two trends
address similar concerns, we find that they have evolved rather independently from
each other. Returning to our example, we might consider the specifications above
presented imperative specifications, whereas a declarative specification will let parts
of the process unspecified.

Contributions Here we present a framework integrating imperative and declarative
views for structured communications. Building from previous research in calculi for
the specification of services [Carbone et al. 2007], we provide modal logic character-
isations of the interactions occurring in a system, both at a from a global standpoint
and from the views of each participant. The framework cope with two aims: exhibit-
ing logical guarantees about the presence of an interaction, and model generation
from logical specifications. In particular, we present two logical languages for de-
scribing choreographies and orchestrations. First, �� is a logic describing possible
interactions in a choreographical language (the global calculus): the correspondence
between specifications in the calculus and the logic is tight, and one can go either
from the logical characterisation to the process algebraic specification of a process,
or prove that a choreographical description respects a formula in �� . Second, �� is
a logic inspired in the Hennessy-Milner with the aim of describing properties about
the interactions in a language of orchestrations (the end-point calculus). The logic
characterises typed bisimulation (pruning). As the main result, we show that there is
a correspondence between imperative and declarative descriptions of the projections
from choreographies to its end-points.

5.1.1 An Example

The notions of the framework are easily explained through an example describing
each of the different visions we integrate.

Let us consider an electronic booking scenario. On one side, consider a com-
pany AC which offers flights directly from its website. On the other side, there is
a customer looking for the best offers. In this scenario, the customer establishes a
communication with AC and asks for a flight proposal given a set of constraints, such
as the destination, the dates allowed, etc. After receiving a request and check its
validity, AC establishes a communication with its partner AC’ serving the destination
asked by the customer, and forwards the request made by the customer to AC’. Once
that AC’ is able to process the request, he can contact the customer and provide
him an offer. The ways AC’ communicates the offer to the customer are purposely
left unspecified: for instance, 1) AC’ could reply back to AC, that later would contact
customer with their previous established session, or 2) AC’ receives from AC the ses-
sion key of the communication established between the customer and AC, and use

104 Chapter 5. Modal Logics for Structured Communications

Cust AC AC'

Init ob(k1,k2)

k1(booking) init ob(k3,k4)

k3(booking)

k4(offer)

k2(offer)

k1(accept)

(a) Interaction diagram (following classical ses-
sion types)

Cust AC AC'

Init ob(k1,k2)

k1(booking) init ob(k3,k4)

k3(booking,k2)

k2(offer)

k1(accept)

(b) Interaction diagram (session types with del-
egation)

Figure 5.1: Electronic booking example

it to reply back to the customer (delegation)2, or 3) AC’ could create a new session
with the customer, and send him the offer directly. A graphical specification of the
interaction diagrams corresponding to such cases is illustrated in Figure 5.1.

A global specification focuses on the description of the interactions between par-
ticipants C���� AC and AC �. For instance, Cust→AC:obAC (�1) initiates an interaction
between the Customer and the service ��AC located in the Airline company, labelled
with a session identifier �1. Similarly, the communication of the offer message be-
tween the Airline partner and the customer will be written as AC’→Cust : �2�offer� ��.
Choreographies COB−� present possible specifications of message exchanges in Fig-
ure 5.1, where COB−1 presents the alternative where messages travel back thru AC,
COB−2 the alternative creating a new session, and COB−3 the alternative using ses-
sion delegation. Notice that, in order for models like the ones described in COB−2 and
COB−3 to respect the causality and coherence relations between interactions present
in the theory of session types, we need languages to be expressive enough to support
further capabilities, like delegation [Honda et al. 1998] and correlation sets [Lapadula
et al. 2007a].

COB−1 = Cust→AC:obAC (�1� �2)� Cust→AC : �1�booking� �1��
AC→AC’:obAC � (�3� �4)� AC→AC’ : �3��1� ���
AC’→AC : �4�offer� �2�� AC→Cust : �2��2� ���
Cust→AC : �1�accept� �� (5.1)

COB−2 = Cust→AC:obAC (�1� �2)� Cust→AC : �1�booking� ���
AC→AC’:obAC � (�3)� AC→AC’ : �3��2� � ���
AC’→Cust : �2�offer� ��� Cust→AC : �1�accept� �� (5.2)

2This option, although interesting, will be refrained from consideration in our current study, as the
choreography language utilised does not feature delegation of sessions

5.1. Introduction 105

COB−3 = Cust→AC:obAC (�1� �2)� Cust→AC : �1�booking� �1��
AC→AC’:obAC � (�3� �4)� AC→AC’ : �3��1� ���
AC’→Cust:obC���(�5� �6)� AC’→Cust : �5�offer� ���
Cust→AC : �1�accept� �� (5.3)

In the same way that a choreographical specification describes each of the in-
teractions between participants, a logical characterisation of choreographies denote
formulae describing the evolution of such interactions. However, a logical characteri-
sation gives more flexibility to the specification of interactions: One can forget about
the addition of extraneous constructs of the language and define a simple policy about
the behaviour of interactions. This policy can be described using logical specification
over choreographies. This logical specification describes only the important parts of
the message flow between participants. For instance, in the above presented speci-
fication, one can describe a property ensuring that, given a communication between
the Customer and the Airline company with a booking message, there is an eventual
response directed to the customer with an offer matching the same session identifier
(in this case, not necessarily coming from the same participant the communication
was initiated).

COB−� |=∃A� �� � �init C��� → AC on ��AC (�1� �2)�� �com C��� → AC over �1(booking)��
♦�com A → C��� over ��(offer)� (5.4)

In a similar but orthogonal approach, the same specification in equation 5.1 can be
seen as processes implementing each participant involved in the choreography. For
instance, an interaction � = Cust→AC:obAC (�1� �2)� �� describing session initiation
can be decomposed to concurrent processes �Cust | �AC implementing each side of the
interaction:

Cust→AC:obAC (�1� �2)� ��

�AC

**

�Cust

tt

��AC ��1� �2�� ��
Cust | ! ��AC (�1� �2)� ��

AC

The full set of projections realising the choreography in equation 5.1 might need
to include participants Cust, AC and AC’, and will need to guarantee that the ordering
of the messages imposed in the global specification is still reflected in the projections.
The resulting behaviour can be seen below:

�Cust = ��AC ��1� �2�� �1!�booking�� �2?(�) � �1!�accept�� 0 (5.5)
�AC = ! ��AC (�1� �2)� �1?(�1) � ��AC � ��3� �4�� �3!��1�� �4?(�2) � �2!��2�� �1?(�) � 0 (5.6)
�AC’ = ! ��AC � (�3� �4)� �3?(�) � �4!�offer�� 0 (5.7)

� = �Cust | �AC | �AC’ (5.8)

106 Chapter 5. Modal Logics for Structured Communications

A declarative vision of end points allows us to express properties regarding each of
the participants involved. For instance, we can check that the end point representing
the customer respects a property stating that there is an eventual reply back after
having made a booking request. Hence, end point specification at Equation 5.5 needs
to satisfy the following formula:

�Cust |=C���[�1!�booking�]� ♦ C���[�2?(�)]� end (5.9)

Where C���[ψ] denotes the execution of an action ψ by participant C��� .
An interesting point here is the relation we can evidence between declarative

specifications at global and local viewpoints. In principle, a declarative model de-
scribing the behaviour at the level of choreographies needs to be projected to formulae
describing the behaviour of their end-points. Let φOB the formula in Equation 5.4,
and its decomposition into end-point formula described below:

[[φOB]] =∃A� ���(C���[��AC ↑ �1� �2]� C���[�1!�booking�] (5.10)
� (C���[��?(offer)] ∨ ♦C���[��?(offer)]))

| (AC [��AC ↓ �1� �2]� AC [�1?(booking)])
| (A[��?(offer)] ∨ ♦A[��?(offer)]) (5.11)

The formula projected only speaks about the projected behaviour from the global
specification, and allows for multiple implementations of services to accomplish such
specification. We will see later, that although the translation seems intuitive, it is
far from trivial: end points can implement many threads at the same time, and those
have to be included in consideration on translations of the logical formulae. Also,
the projections considered should be meaningful, in the sense that they respect the
theory of end point projections. We show in further sections how this is accomplished.

5.1.1.1 Overview of the document

First, In Section 5.2 we recall the reader the formal foundations of a calculus of
choreographies, the so-called global calculus. Its respective logic is presented in
Section 5.3. A proof system relating the logical characterisation and the global cal-
culus shown in Section 5.5. The semantics for the calculus of end-points is presented
in Section 5.6, a logical characterisation of the end-point calculus is presented in
Section 5.7, as well as the main contribution of this paper, namely the correspon-
dence between the end-point projection and the logical projection between global
and local formulae. Finally, concluding remarks are presented in Section 5.8.

5.2 The Global Calculus

The Global Calculus (GC) [Carbone et al. 2006, Carbone et al. 2007] originates from the
Web Service Choreography Description Language (WS-CDL) [Kavantzas et al. 2004],

5.2. The Global Calculus 107

a description language for web services developed by W3C. Terms in GC describe
choreographies as interactions between participants by means of message exchanges.
The description of such interactions is centred on the notion of session, in which two
interacting parties first establish a private connection via some public channel and
then interact through it, possibly interleaved with other sessions. More concretely,
an interaction between two parties starts by the creation of a fresh session identifier,
that later will be used as a private channel where meaningful interactions take
place. Each session is fresh and unique, so each communication activity will be
clearly separated from other interactions. In this section, we provide an operational
semantics for GC in terms of a label transition systems (LTS) [Plotkin 1981] describing
how global descriptions evolve, and the type discipline that describes the structured
sequence of message exchanges between participants from [Carbone et al. 2007].

5.2.1 Syntax

Let �� ��� � � � denote terms of the calculus, often called interactions or choreographies;
A� B� C � � � � range over participants; �� � �� � � � are linear channels; �� �� �� � � � shared
channels; �� �� � � � variables; X � Y � � � � process variables; �� ��� � � � labels for branching;
and finally �� ��� � � � over unspecified arithmetic and other first-order expressions. We
write �@A to mean that the expression � is evaluated using the variable related to
participant A in the store.

Definition 5.2.1. The syntax of the global calculus [Carbone et al. 2006] is given by
the following grammar:

� ::= 0 (inaction)
| A→B:�(�)� � (init)
| A→B : ���� ��� � (com)
| A→B:� [�� : ��]�∈I (choice)
| �1 | �2 (par)
| if �@A then �1 else �2 (cond)
| X (recvar)
| µX � C (recursion)

Intuitively, the term (inaction) denotes a system where no interactions take place.
(init) denotes a session initiation by A via B’s service channel �, with a fresh session
channel � and continuation �. Note that � is bound in �. (com) denotes an in-session
communication of the evaluation (at A’s) of the expression � over a session channel � .
In this case, � does not bind in � (our semantics will treat � as a variable in the store
of B). (choice) denotes a labelled choice over session channel � and set of labels I .
In (par), �1 | �2 denotes the parallel product between �1 and �2. (cond) denotes the
standard conditional operator where �@A indicates that the expression � has to be
evaluated in the store of participant A. In (recursion), µX � � is the minimal fix point
operation for recursion, where the variable X of (recvar) is bound in �. The free and

108 Chapter 5. Modal Logics for Structured Communications

bound session channels, names, and term variables are defined in the usual way, and
are denoted as ���(�)� ���(�)� ��(�)� � � (�). The calculus is equipped with a standard
structural congruence ≡, defined as the minimal congruence relation on interactions
�, such that ≡ is a commutative monoid with respect to | and 0, it is closed under
alpha equivalence ≡α of terms, and it is closed under the recursion unfolding, i.e.,
µX �� ≡ �[µX ��/X].

Remark 5.2.2 (Differences with the approach in [Carbone et al. 2007]). The syn-
tax in Definition 2.1.12 presents a simplified version of the global calculus without
restriction, summation and local assignments. In its original presentation, restric-
tion is used only during session initiation. We capture the requirement of fresh
identifiers by using the operational rules in Figure 5.2. Excluding the lack of local
assignment, we argue that our version of GC is, to some extent, as expressive as
the one originally reported in [Carbone et al. 2007]. In particular, the interaction
process A→B : ��op� �� �� as originally defined captures both selection and mes-
sage passing which are instead disentangled in our case (mainly for clarity reasons).
The absence of op in the interaction process A→B : ���� �� can be easily encoded
with the existing operators. In fact, A→B : ��op� �� ��� �� can be decomposed into
A→B:� [��� : ��

�]�∈I � A→B : ���� ��� �� with unary I (although we lose atomicity).

5.2.2 Semantics

We give the operational semantics in terms of configurations (σ� �), where σ repre-
sents the state of the system and � the choreography actually being executed. The
state σ contains a set of variables labelled by participants. As described in the
previous subsection, a variable � located at participant A is written as �@A. The
same variable name labelled with different participant names denotes different vari-
ables (hence σ (�@A) and σ (�@B) may differ). Formally, the operational semantics
is defined as a labelled transition system (LTS). A transition (σ� �)

�
−−→ (σ �� ��) says

that a choreography � in a state σ executes an action (or label) � and evolves into
�� with a new state σ �. Actions are defined as � = {init A → B on �(�)� com A →
B over �� sel A → B over � : ��}, denoting initiation, in-session communication and
branch selection, respectively. We write (σ� �) −−→ (σ �� ��) when � irrelevant, and
−−→∗ denotes the transitive closure of −−→. The transition relation −−→ is defined
as the minimum relation on pairs state/interaction satisfying the rules in Figure 5.2.

Intuitively, transition (G-I���) describes the evolution of a session initiation: after
A initiates a session with B on service channel �, A and B share the fresh channel �
locally. (G-C��) describes the main interaction rule of the calculus: the expression �
is evaluated into � in the A-portion of the state σ and then assigned to the variable �
located at B resulting in the new state σ [�@B �→ �]. (G-C�����) chooses the evolution
of a choreography resulting from a labelled choice over a session key � . (G-I�T) and
(G-I�F) show the possible paths that a deterministic evolution of a choreography can
produce. (G-P��) and (G-S�����) behave as the standard rules for parallel product
and structural congruence, respectively.

5.2. The Global Calculus 109

G − Init
� fresh

(σ� A→B:�(�)� �)
init A→B on �(�)

−−→ (σ� �[�/�])

G − Struct
� ≡ ��� (σ� �)

�
−−→ (σ �� ��) �� ≡ ����

(σ� ���)
�

−−→ (σ �� ����)

G − Choice

(σ� A→B:� [�� : ��]�∈I)
sel A→B over � :��−−→ (σ� ��)

G − Par
(σ� �1)

�
−−→ (σ �� ��

1)

(σ� �1 | �2)
�

−−→ (σ �� ��
1 | �2)

G − IfF
σ (�@A) ⇓ ff (σ� �2)

�
−−→ (σ �� ��

2)

(σ� if �@A then �1 else �2)
�

−−→ (σ �� ��
2)

G − IfT
σ (�@A) ⇓ tt (σ� �1)

�
−−→ (σ �� ��

1)

(σ� if �@A then �1 else �2)
�

−−→ (σ �� ��
1)

G − Com
σ (�@A) ⇓ �

(σ� A→B : ���� ��� �)
com A→B over �

−−→ (σ [�@B �→ �]� �)

Figure 5.2: Operational Semantics for the Global Calculus

Remark 5.2.3 (Global Parallel). Parallel composition in the global calculus differs
from the notion of parallel found in standard concurrency models based on in-
put/output primitives [Milner 1999]. In the latter, a term P1 | P2 may allow interactions
between P1 and P2. However, in the global calculus, the parallel composition of two
choreographies �1 | �2 concerns two parts of the described system where interactions
may occur in �1 and �2 but never across the parallel operator | . This is because
an interaction A → B � � � abstracts from the actual end-point behaviour, i.e., how A
sends and B receives. In this model, dependencies between two choreographies can
be expressed by using variables in the state σ .

In its original presentation [Carbone et al. 2007], GC comes equipped with a
reduction semantics unlike the one presented in Figure 5.2. Our LTS semantics
has the advantage of allowing to observe changes on the behaviour of the system,
which will prove useful when relating to the logical characterisation in Section 5.3.
We conjecture that our proposed LTS semantics and the reduction semantics of the
global calculus originally presented in [Carbone et al. 2007] coincide (taking into
account the considerations in Remark 5.2.2).

Lemma 5.2.4. if � ≡ ��� and (σ� �)
�

−−→ (σ �� ��) then (σ� ���)
�

−−→ (σ �� ��)

Proof. It follows by trivial case analysis over ≡.

Proposition 5.2.5 (Reduction and LTS semantics coincide in GC). Given �� �� pro-
cesses, → the reduction relation between global calculus processes in [Carbone
et al. 2007] (Included in Appendix 5.A) and

�
−−→ the labelled transition relation

in Figure 5.2. We can say that:

110 Chapter 5. Modal Logics for Structured Communications

Soundness : If (σ� �) → (σ �� ��), then ∃� s.t. (σ� �)
�

−−→
∗

(σ �� ���) and �� ≡ ���.

Completeness : For any � , if (σ� �)
�

−−→ (σ �� ��) then (σ� �) → (σ �� ��).

Proof. On (Soundness): The proof proceeds by induction on the length of derivation
in →.

Case (RG-I���): There must be the case that � = A→B:�(�)� �� and (σ� �) →
(σ �� ��). One can easily show that for � and � = init A → B on �(�),
(σ� �) → (σ �� ��) which is structurally congruent to �� with fresh � on ��.

Case (RG-C���): There must be the case that � = A→B : ��op� �� ��� �� can
be decomposed into A→B:� [��� : ��

�]�∈I � A→B : ���� ��� �� (Remark 5.2.2),
so the reduction of � will be given by (σ� �) →∗ (σ� ��).
By (RG-C���) one get that (σ� �) → (σ [�@B �→ �]� ��), and one can easily
show that for such a �, there is a transition (σ� �)

�
−−→

∗
(σ� ��), with �

variable depending on whether op is used or not:
• If op �= ∅, then we know that the behaviour maps to a deterministic

choice, therefore � = sel A → B over � : � and (σ� �)
�

−−→ (σ ��� ���)
com A→B over � (�)

−−→ (σ �[�@B �→ �]� ��).
• If op = ∅, then we know that the behaviour maps to message passing,

therefore � = com A → B over � (�) and (σ� �)
sel A→B over � :�

−−→ (σ ��� ���)
�

−−→ (σ �[�@B �→ �]� ��).
Case: (RG-I�T): We can assume that for � = if �@A then �1 else �2 then σ �

�@A ⇓ tt and (σ� �) → (σ �� �1), the converse case is symmetric.

From the application of (G-I�T) along with the induction hypothesis (σ� �1)
�

−−→
(σ �� ��

1) we get that (σ� if �@A then �1 else �2)
�

−−→ (σ �� ��
1) which is what

we had to show.
Case: (RG-P��) and (RG-R��): Follows trivially by simple rule induction.
Case: (RG-S�����): Given (σ� ���) → (σ� ����) then we can assume that � ≡ ���

and (σ� �) → (σ �� ��)∧�� ≡ ����. We need to show that (σ� ���)
�

−−→
∗

(σ� ����).
From Lemma 5.2.4 and the inductive hypothesis � ≡ ��� ∧ (σ� �)

�
−−→

∗

(σ �� ��) ∧ �� ≡ ���� then (σ� ���)
�

−−→
∗

(σ �� ����).

On (Completeness): The proof proceeds by case analysis of the labels in � over the
transitions in (σ� C)

�
−−→ (σ �� C �).

Case � = init A → B on �(�): We have that (σ� �)
�

−−→ (σ �� ��) with � =
A→B:�(�)� ��. After the application of (RF-I���) we get that (σ� �) →
(σ� ���[�/�]) with fresh �, and ���[�/�] ≡ ��, hence we are done.

5.2. The Global Calculus 111

Case � = com A → B over � (�): we have that (σ� �) → (σ [�@B �→ �]� ��) with
� = A→B : ���� ��� ��. After the application of (RG-C���) with op = ∅ we
get that (σ� �) → (σ [�@B �→ �]� ��).

Case � = sel A → B over � : �: we have that (σ� �)
�

−−→ (σ� ��) with � =
A→B:� [�� : ��]�∈I . After the application of (RG-C���) with li we get that
(σ� �) → (σ [�@B �→ �]� ��) with � an irrelevant variable in B (extra and not
used elsewhere).

Example 5.2.6 (Online Booking). We consider the example presented in the intro-
duction, i.e., a simplified version of the on-line booking scenario presented in [López
et al. 2010]. Here, the customer (Cust) establishes a session with the airline com-
pany (AC) using service (on-line booking, shorted as ob) and creating session keys
�1� �2. Once sessions are established, the customer will request the company about
a flight offer with his booking data, along the session key �1. The airline company
will process the customer request and will send a reply back with an offer using
the session key �2. The customer will eventually accept the offer, sending back an
acknowledgment to the airline company using �1. The following specification in the
global calculus represents the protocol:

�OB = Cust→AC:ob(�1� �2)� Cust→AC : �1�booking� ��� (OB)
AC→Cust : �2�offer� ��� Cust→AC : �1�accept� ��� 0 �

5.2.3 Session Types for the Global Calculus

The Global Calculus comes accompanied wth a type discipline that ensures the proper
control flow among interactions. It is built as a generalisation of session types [Honda
et al. 1998] for global interactions, first presented in [Carbone et al. 2007]. Here we
informally describe their use thru examples, and direct to their original presentation
for a more formal view.

Session types in GC are used to structure sequence of message exchanges in a
session. Their syntax is as follows:

θ = bool | int | � � �
α = ↑ (θ)�α | ↓ (θ)�α | &{�� : α�}�∈I | ⊕ {�� : α�}�∈I | α1 | α2 | end | µt� α | t (5.12)

Here, θ range over standard data types bool� string� int� � � � and α describe session
types. We describe the forms of α .

• ↓ (θ)�α and ↑ (θ)�α are the input and output types and describe the reception
(resp. emision) of a message with data type θ followed by a continuation α .

• Similarly, &{�� : α�}�∈I is the branching type while ⊕{�� : α�}�∈I is the selection
type.

112 Chapter 5. Modal Logics for Structured Communications

• The type α1 | α2 is a parallel composition of session types α1 and α2.

• The type end indicates session termination and is often omitted.

• µt� α indicates a recursive type with t as a type variable. µt� α binds the free
occurrences of t in α . We take an equi-recursive view on types, not distinguish-
ing between µt� α and its unfolding α [µt� α/t].

Typing judgments in GC have the form Γ � � � ∆, where Γ is a type environment
describing services, and ∆ the type environment describing sessions. Typically, Γ
contains a set of type assignments of the form �@A : α , which say that a service �
located at participant A may be invoked and run a session according to type α . ∆
contains type assignments of the form � [A� B] : α which say that a session channel �
identifies a session between participants A and B and has session type α when seen
from the viewpoint of A. There is no particular reason why one has to choose a strict
direction when considering interactions, and one may as well consider � [A� B] : α
from the viewpoint of B. We return to the specification (OB) in Example 5.2.6 to see
how some of the typing rules work. One possible assignment for ∆ is:

�1� �2[C���� AC] : �1 ↓ booking(string)� �2 ↑ offer(int)� �1 ↓ accept(string)� end

Describing that �1 and �2 are names corresponding to the same session be-
tween participants C��� and AC , and corresponds to the session type α = �1 ↓
booking(string)� �2 ↑ offer(int)� �1 ↓ accept(string)� end when seeing it from the point
of view of C��� .

We provide some examples on the typing rules for the GC. The full set typing
rules derived from the original work are attached in Appendix 5.B. First, we comment
the rule (G-TI���), which types the establishment of a new session between two
participants.

G − TInit
Γ� �@B : (��)α � � � ∆ · �� [B� A] : α A �= B

Γ� �@B : (��)α � A→B:�(��)� � � ∆

Here, the typing rule dictates some requirements on the structure of the chore-
ography: first, the initalisation of a session between participants in A→B:�(��)� �
requires that sessions names in �� correspond to a session type in the premise. More-
over, it checks that the service channel �@B : (��)α is declared in the service typing
Γ. The rule (G-TC��) describes communication between participants:

G − TCom
Γ � � � ∆ · �� [A� B] : α Γ � �@A : θ Γ � �@B : θ � ∈ �� A �= B

Γ � A→B : ���� ��� � � ∆ · �� [A� B] : � ↑ θ� α

Here, the interaction � = A→B : ���� ��� �� will be typable with a session type
∆ · �� [A� B] : � ↑ θ� α provided that: 1) The evaluation of the expression � at A and its

5.3. �� : A Logic for the Global Calculus 113

φ� χ ::= ∃�� φ (f-exists)
| φ ∧ χ (f-and)
| ¬φ (f-neg)
| ���φ (f-action)
| end (f-termination)
| �1@A = �2@B (f-equality)
| φ | χ (f-parallel)
| ♦φ (f-may)

� ::= init A → B on �(�) (l-init)
| com A → B over � (l-com)
| sel A → B over � : � (l-branch)

Figure 5.3: �� : Syntax of formulae

recipient variable � at B correspond to the same value type, 2) the communication is
performed between different participants A and B, and 3) the continuation � contains
a session type between A and B sucht that its session names in �� contain � . In the
conclusion, we use an output type � ↑ θ� α describing the emision of value from the
point of view of A. It is clear, that we could use a complementary rule to type the
input of values from the point of view of B.

Assumption 5.2.7 (Well-typedness). Henceforth we only consider well-typed terms
for the Global calculus, unless otherwise specified.

5.3 �� : A Logic for the Global Calculus

In this section, we introduce a logic for choreography. The logical language comprises
assertions for equality and value/name passing.

5.3.1 Syntax

The grammar of assertions is given in Figure 5.3. Choreography assertions (ranged
over by φ� φ�� χ� � � �) give a logical interpretation of the global calculus introduced in
the previous section. The logic includes the standard FOL operators ∧, ¬, and ∃. In
∃�� φ, the variable � is meant to range over service and session channels, participants,
labels for branching and basic placeholders for expressions. Accordingly, it works as
a binder in φ. In addition to the standard operators, the operator (f-action) represents
the execution of a labelled action � followed by the assertion φ. Those labels � match
the ones in the LTS of GC, i.e., they are (l-init), (l-com), and (l-branch). The formula
(f-termination) represents the process termination. We also include an unspecified,

114 Chapter 5. Modal Logics for Structured Communications

but decidable, (f-equality) operator on expressions as in [Berger et al. 2008]. (f-
may) denotes the standard eventually operators from Linear Temporal Logic (LTL)
[Emerson 1991]. The spatial operator (f-parallel) denotes composition of formulae:
because of the unique nature of parallel composition in choreographies, we have
used the symbol | (as in separation logic [Reynolds 2002] and spatial logic [Caires &
Cardelli 2001]) in order to stress the fact that there is no interference between two
choreographies running in parallel. We assume defined on formulas the standard
relation ≡α of α-conversion. We also assume defined as usual the set ��(φ) of free
name variables in φ. If � is a name and φ is a formula then φ[�/�] denotes the
formula obtained by replacing of all free occurrences of � in φ by the name term �,
(nondeterministically) renaming bound variables as needed to avoid capturing names
in �.
Notation 5.3.1 (Existential quantification over action labels). In order to simplify
the readability, we introduce the concept of existential quantification over action
labels as a short-cut to mean the following:

∃� � ���φ
def
= ∃A� B� �� � � �init A → B on �(�)�� φ ∨

∃A� B� � � �com A → B over ��� φ ∨
∃A� B� �� �� �sel A → B over � : ��� φ �

Remark 5.3.2 (Derived Operators). We can get the full account of the logic by de-
riving the standard set of strong modalities from the above presented operators. In
particular, we can encode the constant true (tt) and false (ff); and the next (◦φ) and
the always operators (2φ) from LTL.

tt
def
= (0@A = 0@A) ff

def
= (0@A = 1@A) (�1 �= �2)

def
= ¬(�1 = �2)

∀�� φ
def
= ¬∃�� ¬φ φ ∨ χ

def
= ¬(¬φ ∧ ¬χ) φ ⇒ χ

def
= ¬φ ∨ χ

2φ
def
= ¬♦¬φ [�]φ

def
= ¬���¬φ ◦φ

def
= ∃� � ���φ �

In the rest of this section, we illustrate the expressiveness of our logic through a
sequence of simple, yet illuminating examples, giving an intuition of how the modal-
ities introduced plus the existential operator ∃ allow to express properties of chore-
ographies.
Example 5.3.3 (Availability, Service Usage and Coupling). The logic above allows
to express that, given a service invoker (known as A in this setting) requesting the
service �, there exists another participant (called B in the example) providing � with
A invoking it. This can be formulated in �� as follows:

∃B� �init A → B on �(�)�tt �

Assume now, that we want to ensure that services available are actually used. We
can use the dual property for availability, i.e., for a service provider B offering �, there
exists someone invoking �:

∃A� �init A → B on �(�)�tt �

5.3. �� : A Logic for the Global Calculus 115

Option 2

Option 1

A B D

Init b(k)
Init d(k')

k' (x)
k (x)

k'' (x)

Init a(k'')

Figure 5.4: Diagram of a partial specification.

Verifying that there is a service pairing two different participants in a choreography
can be done by existentially quantifying over the shared channels used in an initiation
action. A formula in �� representing this can be the following one:

∃�� �init A → B on �(�)�tt �

Example 5.3.4 (Causality Analysis). The modal operators of the logic can be used to
perform studies of the causal properties that our specified choreography can fulfil. For
instance, we can specify that given an expression � evaluated to true at participant
A, there is an eventual firing of a choreography that satisfies property φ1, whilst φ2
will never be satisfied. Such a property can be specified as follows:

(�@A = tt) ∧ ♦(φ1) ∧ 2¬φ2 �

Example 5.3.5 (Response Abstraction). An interesting aspect of our logic is that it
allows for the declaration of partial specification properties regarding the interaction
of the participants involved in a choreography. Take for instance the interaction
diagram in Figure 5.4. The participant A invokes service � at B’s and then B invokes
D’s service �. At this point, D can send the content of variable � to A in two different
ways: either by using those originally established sessions or by invoking a new
service at A’s. However, at the end of both computation paths, variable � (located at
A’s) will contain the value of � . In the global calculus, this two optional behaviour
can be modelled as follows:

C1 = A→B:�(�)� B→D:�(� �)� D→B : � ���� �B�� B→A : ���B� ��� 0 (Option 1)
C2 = A→B:�(�)� B→D:�(� �)� D→A:�(� ��)� D→A : � ����� �� � 0 � (Option 2)

116 Chapter 5. Modal Logics for Structured Communications

We argue that, under the point of view of A, both options are sufficiently good if, after
an initial interaction with B is established, there is an eventual response that binds
variable � . Such a property can be expressed by the �� formula:

∃X � � ��� �init A → B on �(�)�♦
�

�com X → A over � ���(�@A = �@D)
�

� end �

Notice that both the choreographies (Option 1) and (Option 2) satisfy the partial spec-
ification above. This will be clear in Section 5.3.2 where we introduce the semantics
of logic.

Also note that a third option for the protocol at hand is to use delegation (the
ability of communicating session keys to third participants not involved during session
initiation). However, the current version of the global calculus does not feature such
an operation and we leave it as future work.

Example 5.3.6 (Connectedness). The work in [Carbone et al. 2007] proposes a set
of criteria for guaranteeing a safe end-point projection between global and local
specifications (note that the choreography in the previous example does not respect
such properties). Essentially, a valid global specification have to fulfil three different
criteria, namely Connectedness, Well-threadedness and Coherence. It is interesting
to see that some of this criteria relate to global and local causality relations between
the interactions in a choreography, and can be easily formalised as properties in the
choreography logic here presented. Below, we consider the notion of connectedness
and leave the other cases as future work. Connectedness dictates a global causality
principle among interactions. If A initiates any action (say sending messages, as-
signment, etc) as a result of a previous event (e.g. message reception), then such a
preceding event should have taken place at A. In the following, let Interact(A� B)φ be
a predicate which is true whenever ���φ holds for some � with an interaction from A
to B. Connectedness can then be specified as follows:

∀A� B� 2
�

Interact(A� B)tt ⇒ ∃C � �
Interact(A� B)Interact(B� C)tt∨Interact(A� B)¬∃����tt

��
�

5.3.2 Semantics

We now give a formal meaning to the assertions introduced above with respect to
the semantics of the global calculus introduced in the previous section. In particular,
we introduce the notion of satisfaction. We write � |=σ φ whenever a state σ and
a choreography � satisfy a �� formula φ. The relation |=σ is defined by the rules
given in Figure 5.5. In the ∃�� φ case, � should be an appropriate value according to
the type of � , e.g., a participant if � is a participant placeholder. Finally, σ (�1@A) ⇓
denotes the evaluation in the store σ of a closed expression �1 in the participant A
with result � .

Definition 5.3.7 (Satisfiability, Validity and Logical Equivalence in GL).

• A formula φ is satisfiable if there exists some configuration under which it is
true, that is, � |=σ φ for some (�� σ).

5.4. Undecidability of Global Logic 117

� |=σ end
def
= � ≡ 0

� |=σ (�1@A = �2@B)
def
= σ (�1@A) ⇓ � and σ (�2@B) ⇓ �

� |=σ ���φ
def
= (σ� �)

�
−−→ (σ �� ��) and �� |=σ � φ

� |=σ φ ∧ χ
def
= � |=σ φ and � |=σ χ

� |=σ ¬φ
def
= � �|=σ φ

� |=σ ∃�� φ
def
= � |=σ φ[�/�] (for some appropriate �)

� |=σ ♦φ
def
= (σ� �) −−→∗ (σ �� ��) and �� |=σ � φ

� |=σ φ | χ
def
= � ≡ �1 | �2 such that �1 |=σ φ and �2 |=σ χ

Figure 5.5: Assertions of the Choreography Logic

• A formula φ is valid if it is true in every configuration, that is, � |=σ φ for every
(�� σ).

• A formula χ is a logical consequence of a formula φ (or φ logically implies χ),
denote with an abuse of notation as φ |= χ , if every configuration (�� σ) that
makes φ true also makes χ true.

• We say that a formula φ is logical equivalent to a formula χ , written φ ≡|= χ ,
if φ |= χ iff χ |= φ.

• Given a set of formulae Φ and ≡|=, the equivalence class of φ ∈ Φ is the subset
of all elements in Φ such that are logically equivalent to φ:

[φ] = {� ∈ Φ|� ≡|= φ}

5.4 Undecidability of Global Logic

In this section we focus on the undecidability of the global logic for the global calculus
with recursion given in Section 5.2. In order to prove that the global logic is undecid-
able, we use a reduction from the Post Correspondence Problem (PCP) [Post 1944]
similarly to the one proposed in [Charatonik & Talbot 2001]. The idea is to encode
in the global calculus a “program” which simulates the construction of PCP. We first
give a formal definition of the PCP. In the sequel, · denotes word concatenation.

Definition 5.4.1 (PCP). Let �� �� � � � range over Σ∗ where Σ = {0� 1} and let ε be
the empty word. An instance of PCP is a set of pairs of words {(�1� �1)� � � � � (��� ��)}
over Σ∗ × Σ∗. The Post Correspondence Problem is to find a sequence �0� �1� � � � � ��
(1 ≤ �� ≤ � for all 0 ≤ � ≤ �) such that ��0 · � � � · ��� = ��0 · � � � · ��� .

Intuitively, PCP consists of finding some string in Σ∗ which can be obtained by the
concatenation ��0 · � � � · ��� as well as by ��0 · � � � · ��� . Such a problem has been

118 Chapter 5. Modal Logics for Structured Communications

proved to be undecidable [Post 1944]. Our goal is to find a GC term that takes a
random pair of words from an instance of PCP and append them to an “incremental
pair” of words which encodes the current state of the sequences ��0 · � � � · ��� and
��0 · � � � · ��� . Technically, we need a choreography that assigns randomly a natural
number in {1� � � � � �} to a variable � in some participant B, and another choreography
that picks a pair of words from the PCP instance, accordingly to value in the variable
�@B, and then appends them to the “incremental pair” of words in A. Formally,

Definition 5.4.2 (Encoding of PCP). Let A1� � � � � A�� A� B be participants and let �� �
be shared names for sessions, then define the two choreographies as shown below:

Random(A1� � � � � A�� B� �)
def
= µX � A1→B:�(�)� A1→B : ��1� ��� X

| µX � A2→B:�(�)� A2→B : ��2� ��� X
| � � �
| µX � A�→B:�(�)� A�→B : ���� ��� X

Append(A� B� �)
def
= µX � A→B:�(�)� A→B : �����1� ���1�� A→B : �����2� ���2��

if �@B = 1 then
B→A : �����1 · �1� ���1�� B→A : �����2 · �1� ���2�� X

else if �@B = 2 then
B→A : �����1 · �2� ���1�� B→A : �����2 · �2� ���2�� X

else if �@B = 3 then
...

else if �@B = � then
B→A : �����1 · ��� ���1�� B→A : �����2 · ��� ���2�� X

else X

We define the initial configuration (σ� �) to be formed by the choreography and the
state below:

�
def
= Random(A1� � � � � A�� B� �) | Append(A� B� �)

σ
def
= [���1@A �→ ε� ���2@A �→ ε� ���1@B �→ ε� ���2@B �→ ε� �@B �→ 1] �

For encoding the PCP existence question (��0 · � � � · ��� = ��0 · � � � · ���) we can encode
it as a �� formula:

φ
def
= ♦

�
(���1@A = ���2@A) ∧ (���1@A �= ε) ∧ (���2@A �= ε)

�
�

Above, each participant A� (with � ∈ {1� � � � � �}) recursively opens a session with
participant B and writes in the variable �@B the value �. Moreover, the participant
B stores the knowledge of all the word pairs (��� ��), while the participant A takes
randomly a word pair from B and then append it to his incremental pair of words:
(���1� ���2). Next, the formula φ states that there exists a computational path from
the initial configuration to a configuration which stores in ���1 and ���2 two equal
non-empty strings.

5.5. Proof System for �� 119

Theorem 5.4.3. The global logic is undecidable on the global calculus with recursion.

Proof. (Sketch) The statement � |=σ φ holds iff the encoded PCP has a solution.
Indeed, if the initial configuration (σ� �) satisfies the formula φ then it means there
exists a configuration (σ �� ��) where (���1@A = ���2@A)∧ (���1@A �= ε)∧ (���2@A �=
ε) holds. Hence, there is a sequence of �0� � � � � �� such that ���1 = ��0 · � � � · ��� =
��0 · � � � · ��� = ���2, that is, the instance of PCP has a solution.

Remark 5.4.4. The undecidability result presented in this section shows that the
global calculus is considerably expressive, despite the choreography approach offers
a simplification in the specification of concurrent communicating systems as argued
in [Carbone et al. 2007]. The encoding in Definition 5.4.2 shows that allowing state
variables (hence local variables that can be accessed by various threads) increases
the expressive power of the language. Indeed, we could just look at GC as a simple
concurrent language with a “shared” store where assignment to variables is just
in-session communication. In this view, we conjecture that removing variables and
focusing only on communication would make the logic decidable.

5.5 Proof System for ��

Here we present a model checking algorithm (in the form of a proof system) to decide
when a global logic formula is satisfied by a recursion-free configuration of the global
calculus. Indeed, similarly to [Charatonik & Talbot 2001], it turns out that the logic is
decidable on the recursion-free choreographies3. We also prove the soundness and
completeness of the proposed proof system w.r.t. the assertion semantics.

In order to reason about judgments � |=σ φ, we propose a proof (or inference)
system for assertions of the form � �σ φ. Intuitively, we want � �σ φ to be as
approximate as possible to � |=σ φ (ideally, they should be equivalent). We write
� �σ φ for the provability judgement where (σ� �) is a configuration and φ is a formula.

Notation 5.5.1. We define the set of continuations, and the reachable set of config-
urations from an source configuration (σ� �), after an action � , as follows:

Next(σ� �� �)
def
= {(σ �� ��) | (σ� �)

�
−−→ (σ �� ��)}

Reachable(σ� �)
def
= {(σ �� ��) | (σ� �) −−→∗ (σ �� ��)} �

Normalisation is required by the proof system to infer equality of choreographies
up to structural equivalence (Specially for the [·] | [·] operator).

We define Norm(�) to be a normalization function from recursion-free choreogra-

3As described in [Carbone et al. 2010], removing recursion yields a decidability result in ��

120 Chapter 5. Modal Logics for Structured Communications

phies into multisets of choreographies:

Norm(A→B : ���� ��� �)
def
= [A→B : ���� ��� �]

Norm(A→B:� [�� : ��]�∈I)
def
= [A→B:� [�� : ��]�∈I]

Norm(A→B:�(�)� �)
def
= [A→B:�(�)� �]

Norm(if �@A then �1 else �2)
def
= [if �@A then �1 else �2]

Norm(0)
def
= []

Norm(�1 | �2)
def
= [P1� � � � � P�� Q1� � � � � Q�] if Norm(�1) = [P1� � � � � P�] and

Norm(�2) = [Q1� � � � � Q�] �

Lemma 5.5.2 (Normalisation preserves structural equivalence). Let � be a recursion-
free choreography and Norm(�) = [P1� � � � � P�], then � ≡

��
�=1 P�.

Proof. By induction on the structure of the choreography �.

Case � = 0: We have Norm(0) = [], and
�0

�=1 P� = 0 ≡ 0.

Case � = �1 | �2: We have that Norm(�1) = [P1� � � � � P�], Norm(�2) = [Q1� � � � � Q�],
and

��
�=1 P� ≡ �1,

��
�=1 Q� ≡ �2 by induction hypothesis. Then, we can derive

that
��

�=1 P� | ��
�=1 Q� ≡ �1 | �2.

All the other cases: Trivially we have that Norm(�) = [P1], where P1 = �, then�1
�=1 P� ≡ �.

Definition 5.5.3 (Entailment). We say that a choreography � entails a formula φ
under a state σ , written � �σ φ, iff the assertion � �σ φ has a proof in the proof
system given in Table 5.1.

Let us now describe some of the inference rules of the proof system. The rule
Pend relates the inaction terms with the termination formula. The rules Pand and Pneg
denote rules for conjunction and negation in classical logic, respectively. The rule
for parallel composition is represented in Ppar; it does not indicate the behaviour of
a given choreography, but hints information about the structure of the process: Ppar
juxtaposes the behaviour of two processes and combines their respective formulae
by the use of a separation operator. The next rule, Paction requires that the process
P in the configuration σ can perform an action labelled � , so we must search for
a continuations of (σ� �) after an action � and find a configuration which satisfies
the rest of the formula, i.e., φ. Analogously, Pmay looks for a continuation in the
reachable configuration of (σ� �) in oder to satisfy φ. The rule P∃ says that in order
to satisfy an ∃�� φ, it is sufficient to find a value � for � in the free names used by
the choreography � or in the free names used by the formula φ. Finally, the rule
Pexp denotes evaluation of expressions.

We now proceed to prove the soundness of the proof system with respect to the
semantics of assertions presented before.

5.5. Proof System for �� 121

Pend
Norm(�) = []

� �σ end

Pand
� �σ φ � �σ χ

� �σ φ ∧ χ

Pneg
� ��σ φ

� �σ ¬φ

Pmay
∃(σ �� ��) ∈ Reachable(σ� �)� �� �σ � φ

� �σ ♦φ

Ppar
Norm(�) = [P1� � � � � P�]

∃I� J� I ∪ J = {1� � � � � �} ∧ I ∩ J = ∅ ∧
�

�∈I P� �σ φ1 ∧
�

�∈J P� �σ φ2

� �σ φ1 | φ2

P∃
∃� ∈ ��(�) ∪ ��(φ)� � �σ φ[�/�]

� �σ ∃�� φ

Pexp
σ (�1@A) ⇓ � σ (�2@B) ⇓ �

� �σ (�1@A = �2@B)

Paction
∃(σ �� ��) ∈ Next(σ� �� �)� �� �σ � φ

� �σ ���φ

Table 5.1: Proof system for the Global Calculus.

Lemma 5.5.4 (Structural congruence preserves satisfiability). If � ≡ �� and � |=σ φ,
then �� |=σ φ.

Proof. It follows from simple case analysis over ≡. We have the following cases:

Case P � ≡ P | 0: We have that P |=σ φ and P ≡ P | 0. By the definition of |=,
P � |=σ φ | ψ iff P � ≡ P | Q, P |=σ φ and Q |=σ ψ. Substituting Q with 0, we
have that P � |=σ φ | tt, that implies P � |=σ φ

Cases P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R and P ≡α P �: They are trivial as |
is commutative and associative in �� and variable substitution do not affect
provability.

Theorem 5.5.5 (Soundness). For any configuration (σ� �), where � is recursion-free,
and every formula φ, if � �σ φ then � |=σ φ.

Proof. It follows by induction on the derivation of �σ .

Case Pend: Straight consequence of Lemmas 5.5.2 and 5.5.4, indeed � ≡ 0 and � |=σ
end.

Case Pand: By induction hypothesis and conjunction.

Case Pneg: We have that � �σ ¬φ, so by Pneg we get � ��σ φ. By induction hypothesis
we have that � �|=σ φ, which is the necessary condition to deduce � |=σ ¬φ.

122 Chapter 5. Modal Logics for Structured Communications

Case Ppar: We have that � �σ φ1 | φ2, then Norm(�) = [P1� � � � � P�], and there exist
I� J such that I ∪ J = {1� � � � � �}, I ∩ J = ∅,

�
�∈I P� �σ φ1, and

�
�∈J P� �σ φ2.

By induction hypothesis we know that
�

�∈I P� |=σ φ1 and
�

�∈J P� |=σ φ2, then
by Lemma 5.5.2 we have � ≡

�
�∈I P� | �

�∈J P� , hence it is immediate to prove
that � |=σ φ1 | φ2.

Case Paction: We have that � �σ ���φ and by Paction then �� �σ � φ and (σ �� ��) ∈
Next(σ� �� �). From the induction hypothesis we have that �� |=σ � φ, then we
have to show that � |=σ ���φ. From the assertion semantics we know that
C |=σ ���φ iff (σ� ��)

�
−−→ (σ �� ��) and �� |=σ � φ, which holds immediately by

the selection of (σ �� ��) ∈ Next(σ� �� �) and the induction hypothesis.

Case Pmay: We have that � �σ ♦φ and by Pmay then �� �σ � φ and (σ �� ��) ∈
Reachable(σ� �). From the induction hypothesis we have that �� |=σ � φ, then
we have to show that � |=σ ♦φ. From the assertion semantics we know that
C |=σ ♦φiff(σ� ��) −−→∗ (σ �� ��) and �� |=σ � φ, which holds immediately by the
selection of (σ �� ��) ∈ Reachable(σ� �) and the induction hypothesis.

Case P∃: We have that � �σ ∃��φ and by P∃ we have that ∃� ∈ ��(�) ∪ ��(φ)
and � �σ φ[�/�]. By induction hypothesis we know that C |=σ φ[�/�] with
appropriate � ∈ ��(�) ∪ ��(φ), then � |=σ ∃��φ follows from the definition of
the assertion semantics.

Case Pexp: It holds trivially by checking if σ (�1@A) ⇓ � and σ (�2@B) ⇓ � .

The proof of completeness relies on a renaming lemma, that states that logical
properties are preserved over name permutations. These kind of lemmas are standard
among logical frameworks for process calculi (e.g. [Cardelli & Gordon 2000, Miculan
& Bacci 2006]) and the general proof technique proceeds by induction on the syntax
of formulae.

Lemma 5.5.6 (Renaming preserves satisfiability). For every configuration (σ� �),
where � is recursion free, and every formula ∃�� φ, if {�1� � � � � ��} = ��(�) ∪ ��(φ),
then � |=σ ∃�� φ iff ∃� ∈ {�1� � � � � ��} such that � |=σ φ[�/�].

Proof. (Sketch) By induction on the structure of φ. It is similar to the proof of [Cardelli
& Gordon 2000, Lemma 5.3(3)].

Theorem 5.5.7 (Completeness). For any configuration (σ� �), where � is recursion-
free, and every formula φ, if � |=σ φ then � �σ φ.

Proof. By rule induction on the derivation of |=σ .

Case � |=σ end: We have that � ≡ 0 and hence Norm(�) = [] by Lemma 5.5.2. Now,
the thesis follows immediately from the application of Pend.

5.5. Proof System for �� 123

Case � |=σ (�1@A = �2@B): It follows immediately by the application of Pexp.

Case � |=σ ���φ�: Take (σ� �)
�

−−→ (σ �� ��) and �� |=σ � φ�, we have by induction hy-
pothesis that �� �σ � φ�. Now, we have to show that � �σ ���φ�. By the fact that
(σ� �)

�
−−→ (σ �� ��), we have that (σ �� ��) ∈ Next(σ� �� �), hence, we can apply

rule P������ and we are done.

Case � |=σ φ ∧ χ : We have that � |=σ φ and � |=σ χ . From the induction hypothesis
we have that � �σ φ and � �σ χ . The application of Pand lead to � �σ φ ∧ χ as
desired.

Case � |=σ ¬φ: From the definition of the assertion semantics we have that � |=σ ¬φ
iff � �|=σ φ. We have to show that � �σ ¬φ. We proceed by contradiction. Take
a (φ� �) such that � �σ φ, then from Theorem 5.5.5 we have that � |=σ φ, which
is a contradiction to � |=σ ¬φ.

Case � |=σ ∃�� φ: We have that � |=σ ∃��φ and by the definition in the assertion
semantics we have that � |=σ φ[�/�] for an appropriate � . By induction hy-
pothesis we know that � �σ φ[�/�]. Lemma 5.5.6 guarantees that there exists
� ∈ ��(�) ∪ ��(φ) in order to derive � �σ ∃��φ from P∃.

Case � |=σ ♦φ: Take (σ� �) −−→∗ (σ �� ��) and �� |=σ � φ�, we have by induction hy-
pothesis that �� �σ � φ�. Now, we have to show that � �σ ♦φ�. By the fact
that (σ� �) −−→∗ (σ �� ��), we have that (σ �� ��) ∈ Reachable(σ� �), hence, we can
apply rule P��� and we are done.

Case � |=σ φ | χ : We have that � ≡ �1 | �2 and �1 |=σ φ ∧ �2 |=σ χ . From the
induction hypothesis �1 �σ φ and �2 �σ χ . Now by Lemma 5.5.2 we have
that �1 ≡

�
�∈I P� and �2 ≡

�
�∈J P� for some I� J . So, we can derive � ≡�

�∈I P� | �
�∈J P� , and hence Ppar leads to �1 | �2 �σ φ | χ .

Theorem 5.5.8 (Termination). For any configuration (σ� �), where � is recursion-free,
and every formula φ, proof-checking algorithm terminates.

Proof. First, notice that all the functions Norm, Next, and Reachable are total and
computable. The proof is by induction over the structure of φ.

Case φ = end: � �σ end iff Norm(�) = [].

Case φ = φ1 ∧ φ2: By conjunction and induction hypothesis on � �σ φ1 and � �σ φ2.

Case φ = ¬φ�: � �σ φ iff � �σ φ� does not hold. But by induction hypothesis we
can construct a terminating proof or confutation for � �σ φ�. Hence the proof
for � �σ φ terminates as well.

124 Chapter 5. Modal Logics for Structured Communications

Case φ = φ1 | φ2: Suppose Norm(�) = [P1� � � � � P�]. Notice that there exists a finite
number of possible partitioning of {1� � � � � �} in I� J . Hence, for every I� J we can
compute

�
�∈I P� �σ φ1 and

�
�∈J P� �σ φ2, which both terminate by induction

hypothesis. By applying Lemma 5.5.2 we prove the thesis.

Case φ = ���φ�: First, notice that the set Next(σ� �� �) is finite, because the chore-
ographies are finite, i.e., there are a finite number of actionable transition in
a given configuration. For each configuration (σ �� ��) ∈ Next(σ� �� �), �� �σ � φ�

terminates by induction hypothesis.

Case φ = ♦φ�: As before, notice that the set Reachable(σ� �) is finite, because the
choreographies are finite, i.e., the choreographies are recursion free. For each
configuration (σ �� ��) ∈ Reachable(σ� �), �� �σ � φ� terminates by induction hy-
pothesis.

Case φ = ∃�� φ�: To prove existence is sufficient to check every derivation by sub-
stituting � with a name � ∈ ��(�) ∪ ��(φ). Notice that ��(�) ∪ ��(φ) is finite,
because both � and φ are so. So, for every � , we can construct a terminating
derivation for � �σ φ�[�/�] by induction hypothesis.

Case φ = (�1@A = �@@B) : � �σ (�1@A = �@@B) iff �1@A ⇓ � and �@@B ⇓ � .

5.6 End-Point Calculus

5.6.1 Syntax

The end-point calculus (EPC) [Carbone et al. 2007] is the π-calculus [Milner 1999]
extended with sessions [Honda et al. 1998] as well as locations [Hennessy 2007] and
store [Carbone et al. 2004]. Below, P� Q� � � � denote processes, M� N� � � � networks.

P ::= ! �(�̃)� P (initin) | ���̃�� P (initout)
| � !���� P (send) | �?(�) � P (receive)
| � � l� P (label selection) | � ⇤ {

�
� li� P�} (label branching)

| P1 ⊕ P2 (plus) | P1 | P2 (par)
| µX � P (rec) | X (recvar)
| if � then P1 else P2 (cond) | 0 (inact)

N ::= A[P]σ (participant)
| N1 | N2 (parnet)
| ε (inactnet)

(initin) and (initout) are dual operations for describing session initiation: ! �(�̃)� P
denotes a process offering a replicated (available in many copies) service � with ses-
sion channels �̃ while ���̃�� P denotes a process requesting a service � with session

5.6. End-Point Calculus 125

E − S�Init�O

���̃�� P
�↑�̃

−−→ P

E − S�Init�I

! �(�̃)� P
�↓�̃

−−→ P | ! �(�̃)� P

E − M�Out
� ⇓ �

� !���� P
� !���

−−→ P

E − M�In

�?(�)� P
�?(�)

−−→ P

E − L�Sel

� � l� P
��l

−−→ P

E − L�Branch
1 ≤ � ≤ �

� ⇤ {
�

� li� P�}
�⇤lj

−−→ P�

E − Sum
� ∈ {1� 2}

P1 ⊕ P2
τ

−−→ P �
�

E − Par�P
P

m
−−→ P �

P | Q
m

−−→ P � | Q

Figure 5.6: End Point Calculus: LTS semantics for Processes

channels �̃ . In both cases, P is the continuation. The next two processes denote
standard in-session communications (where �� in the first construct, the branching
input, is not bound in P�, and {��} should be pairwise distinct). The term (����) de-
notes internal choice. The rest is standard. Networks are parallel composition of
participants, where a participant has the shape A[P]σ , with A being the name of the
participant, P its behaviour, and σ its local state, now interpreted as a local function
from variables to values. We often omit σ when irrelevant. The free session channels,
free term variables and service channels are defined as usual over processes and
networks and, similarly to the global calculus, are denoted by ���(P/N)� � � (P/N)
and ��������(P/N) respectively. The syntax here presented differs from its original
presentation in the absence of the local assignments and restriction of networks and
processes.

5.6.2 Semantics

Similarly to the Global Calculus, the EPC is equiped with a structural congruence
relation. ≡ in EPC is the least congruence on processes and networks such that
(≡� 0� ⊕), (≡� 0� |) and (≡� ε� |) are commutative monoids and such that A[P]σ ≡
A[Q]σ (for P ≡ Q), and A[0]σ ≡ ε.

We give an operational semantics in terms of configurations N
m

−−→ N �, where N
and N � are networks and m belongs to the sets of labels {τ� � ↑ �� � ↓ �� � !���� �?(�)� �⇤
l� � � l}. Its labelled transition semantics follows the π-calculus and is defined by
the rules given in Figure 5.7. Note that symmetric rules are omitted.

Rules in the transition semantics for EPC treat processes and networks differ-
ently. (E-S.I���.O) and (E-S.I���.I) describe session initiation from the point of view
of the requester and provider, respectively. Here, ! �(�)�P denotes a replicated ser-
vice. Message passing communication over sessions are described by(E-M.O��) and
(E-M.I�), where � ⇓ � describes the evaluation of expression and P [� /�] the sub-
stitution of variables � by � in P . Label selection/branching is given by (E-L.S��)
and (E-L.B�����). (E-P��.P) and (E-S��) are standard rules representing parallel
composition and internal choice. Rules (E-P���) allows transition labels to travel
out from processes to networks without modifying the store. (E-P���.I�) modifies the

126 Chapter 5. Modal Logics for Structured Communications

E − Part
P

m
−−→ P � m �= �?(�)

A[P]σ
m

−−→ A[P �]σ

E − Par�N
M

m
−−→ M �

M | N
m

−−→ M � | N

E − Part�In

P
�?(�)

−−→ P �

A[P]σ
�?(�)

−−→ A[P �]σ [� �→�]

E − Com
N

m
−−→ N � M

m
−−→ M � m not init

N | M
τ

−−→ N � | M �

E − Init

N
�↑�̃

−−→ N � M
�↓�̃

−−→ M � �̃ is fresh
N | M

τ
−−→ (N � | M �)[�̃/�̃]

E − IfT
σ � � ⇓ tt A[P1]σ

m
−−→ A[P �

1]σ
A[if � then P1 else P2]σ

m
−−→ A[P �

1]σ

E − IfF
σ � � ⇓ ff A[P2]σ

m
−−→ A[P �

2]σ
A[if � then P1 else P2]σ

m
−−→ A[P �

2]σ

Figure 5.7: End Point Calculus: LTS semantics for Networks

store of a participant after having exhibited an input behaviour. (E-C��) describes
synchronisation of transition labels, used for message passing and label selection
between networks. (E-I���) represents session initiation between different networks,
here � acts as a “fresh” variable, used to represent the creation of a new session
between N and M . Finally, (E-P��.N) describes the parallel composition between
networks

Lemma 5.6.1. If N ≡ M and N
m

−−→ N � then M
m

−−→ N �.

Proof. Follows by trivial case analysis over ≡.

Proposition 5.6.2 (Reduction and LTS semantics coincide in EPC). Given N� N �

networks, → the reduction relation between networks in [Carbone et al. 2007] (given
for readability in Appendix 5.C) and

m
−−→ the transition relation between processes

given in Figure 5.7. We can say that:

Soundness : If N → N �, then ∃m s.t. N
m

−−→ N �.

Completeness : If N
τ

−−→ N � then N → N �.

Proof. On Soundness: The proof proceeds by induction on the length of the reduc-
tions in →.

Case (E-RI���): We have that N = A[! �(�̃ � P) | P �]σ | B[���̃�� Q | Q�]σ �

and we have that for �� ∈ �̃ , �� ∈ ���(P �) ∪ ���(Q�) and � is fresh, and
N → (A[! �(�̃)� P | P �]σ | B[Q | Q�]σ �)[�̃/�̃].
From the application of (E-P���), (E-P��.P) and (E-S.I���.I) in N , we have

that N1 = A[! �(�̃)� P | P �]σ
�↓K̃

−−→ A[! �(�̃)� P | P | P �]σ .

5.6. End-Point Calculus 127

Similarly, from the application of (E-P���), (E-P��.P) and (E-S.I���.O) we

get N2 = B[���̃�� Q | Q�]σ �
�↑K̃

−−→ B[Q | Q�]σ � .
Finally, after application of (E-I��) we have that

N1 | N2
τ

−−→ (A[! �(�̃)� P | P | P �]σ | B[Q | Q�]σ �)[�̃/�̃]�

which is what we had to show.

Case (E-RC��): We have that N = A[�?(�)� | P �]σ | B[� !���� Q | Q�]σ � , and
given σ � �@ ⇓ � then N → A[P | P �]σ [� �→�]] | B[Q | Q�]σ � .
After the application of (E-P���), (E-P��.P) and (E-M.O��) over N2 =

B[� !���� Q | Q�]σ � then N2
� !���

−−→ B[Q | Q�]σ � .
Similarly, the application of (E-P���.I�),(E-P��.P) and (E-M.I�) to N1 =
A[�?(�)� P | P �]σ leads to N1

�?(�)
−−→ A[P | P �]σ [� �→�].

Finally, the application of (E-C��) over N1 | N2 leads to N1 | N2
τ

−−→
A[P | P �]σ [� �→�] | B[Q | Q�]σ � , which is what we had to show.

Case (E-RS��): We have that N = A[� ⇤ {
�

� li� P�} | P �]σ | B[� � �� � Q | Q�]σ �

and, provided � ∈ I , then N → A[P� | P �]σ | B[Q | Q�]σ � .
After the application of (E-����), (E-P��.P) and (E-L.B�����) over N1 =

A[� ⇤ {
�

� li� P�} | P �]σ we get that N1
�⇤lj

−−→ A[P� | P �]σ .
Similarly, after the application of (E-����), (E-P��.P) and (E-L.B�����)

over N2 = B[� � �� � Q | Q�]σ � we get that N2
��lj

−−→ B[Q | Q�]σ � .

Finally, after the application of (E-C��) over N1 | N2 we get: N1 | N2
τ

−−→
A[P� | P �]σ | B[Q | Q�]σ � , and we are done.

Cases (E-R��T) and (E-R��F): It must be the case that N = A[if � then P1 else P2 | P �]σ
and assume σ � � ⇓ tt and A[P1]σ → A[P �

1]σ , then N → A[P �
1 | P �]σ . One

can easily show that A[if � then P1 else P2 | P �]σ
m

−−→ A[P �
1 | P �]σ after

the application of rules (E-P��.P) and (E-I�T) and the induction hypothesis
A[P1]σ

m
−−→ A[P �

1]σ (the converse case is symmetrical).

Case (E-RP��), (E-RS��) and (E-RR��): They follow trivially after simple rule
induction.

Case (E-RS�����): Given N �� → N ��� then we can assume that N ≡ N �� and
N → N � ∧ N � ≡ N ���. We need to show that N �� m

−−→ N ���. From Lemma
5.6.1 and the inductive hypothesis N ≡ N �� ∧ N

m
−−→ N � ∧ N � ≡ N ��� then

N �� m
−−→ N ���.

On Completeness: The proof proceeds by induction on the length of the derivations
in

τ
−−→.

128 Chapter 5. Modal Logics for Structured Communications

Case (E-C��): We have that M
m

−−→ M � and N
m

−−→ N � where � is not part
of the initalization labels {� ↑ �� � ↓ �}, then N | M

τ
−−→ N � | M �. We

have to show that N | M → N � | M �.
We proceed by case analysis on m:

• (m = � !��� and m = �?(�)): Assume N = A[� !���� P �]σ and M =
B[�?(�)� Q�]σ � and σ � � ⇓ � .
On the one hand, after application of (E-M.O��), (E-M.I�), (E-P���.I�),
(E-P���) and (E-C��) in the LTS, we have that M | N

τ
−−→ A[P �]σ | B[Q�]σ � [� �→�].

On the other hand, after the application of (E-RC��) to M | N we get
that M | N → A[P �]σ | B[Q�]σ � [� �→�], so we are done.

• (m = � � l and m = � ⇤ l:) Assume w.l.o.g. N = A[� � �� � P �]σ
and M = B[� ⇤ {

�
� li� Q�}]σ � . From the application of (E-L.S��), (E-

L.B�����), (E-P���) and (E-C��) in the LTS semantics, we get that
N | M

τ
−−→ A[P �]σ | B[Q�]σ � . Similarly, from the application of (E-

RS��) in the reduction semantics we get that N | M → A[P �]σ | B[Q�]σ �

so we are done.

Case (E-I���): We have that M
�↑�̃

−−→ M � and N
�↓�̃

−−→ N �. Then applying
(E-I���) in the LTS semantics we get N | M

τ
−−→ (N � | M �)[�̃/�̃]. We have

to show that N | M → (N � | M �)[�̃/�̃].
Assume w.l.o.g. M = A[! �(�̃ � P)]σ and N = B[���̃�]σ � . After the applica-
tion of (E-S.I���.O), (E-P���), (E-S.����.I) and (E-I���) in the LTS, we have
that M | N

τ
−−→ (A[! �(�̃)� P | P]σ | B[Q]σ �)[�̃ /�̃]. Similarly, after applying

(E-RI���) to M | N we get that M | N → (A[! �(�̃)� P | P]σ | B[Q]σ �)[�̃ /�̃],
which is what we had to show.

Case (E-S��): It follows immediately after the application of (E-RS��).

5.6.3 Session Types for the End-Point Calculus

Session types for the EPC builds from the syntax of session types in equation 5.12.
Basically, the type discipline of the EPC stems from the Global Calculus, but assigns
session types to every single participant instead of the whole choreography. In this
way, the session typing in the EPC describes the end-point behaviour. An end-point
typing judgment contains judgements for processes in the form Γ �A P � ∆ (where
P is typed as a behaviour for A) and judgements for networks Γ � N � ∆. In both,
mappings Γ and ∆ are service and session typings respectively. Here, Γ and ∆ are
defined as:

Γ ::= ∅ | Γ� �@A : (�̃)α | Γ� �@A : (�̃)α | Γ� �@A :θ | Γ� X :∆
∆ ::= ∅ | ∆� �̃@A :α | ∆� �̃ :⊥

5.6. End-Point Calculus 129

Above, �@A : (�̃)α indicates the service located at A which is invoked with fresh
session channels �̃ and offers service of the shape α , while �@A : (�̃)α indicates
the type abstraction for the dual invocation, i.e. a client of an A’s service which
invokes with fresh channels �̃ and engages in interactions abstracted as α . Note @A
indicates the location of a service in both forms. As before, �̃ should be a vector of
pairwise distinct session channels which should cover all session channels in α , and
α does not contain free type variables. (�̃) binds occurrences of session channels in
(�̃) in α , which induces the standard alpha-equality. A central concept in this type
discipline is the notion of duality for session types, which is defined as:

(�̃)α@A =?(�̃)α@A ?(�̃)α@A =(�̃)α@A

where the notion of duality α of α remains the same.
The typing rules are almost identical as the ones from the original presentation

of the EPC [Carbone et al. 2007], where the only difference lies on the separation
between input-output types and selection-branching types as originally presented
in [Honda et al. 1998]. Here we only comment some examples on the typing rules,
and the full type system can be found in Appendix 5.D. Similarly as with the type
system for the Global Calculus, we will focus the examples in session initiation and
communication. The two rules (E-TI���.I�),(E-TI���.O��) describe session initiation
primitives:

E − TInit�In
Γ �A P � �̃@A : α � �∈ ���(Γ) ������(Γ)

Γ� ! �(�̃)α@A �A!�(�̃)� P � ∅

E − TInit�Out
Γ� � : (�̃)α@B �A P � ∆ · �̃@A : α

Γ� � : (�̃)α@B �A ���̃�P � ∆

In (E-TI���.I�), the premise only allows for typings of session channels involved in
the session initialisation of service �, that is, only the channels in �̃ . This linearity
condition blocks free session channels from occurring during a replicated input. The
condition � �∈ ���(Γ) prevents from self-calls and ensures that the type assignment
occurs at the side of the client. Requirements for the complementary typing rule (E-
TI���.I�) are analogous, although the linearity condition is removed. Communication
rules are standard for session types, for instance, the rule (E.TO��) is used to type
message outputs:

E�TOut
� ∈ �̃ Γ �A P � ∆ · �̃@A : α Γ � � : θ

Γ �A � !���� P � ∆ · �̃@A : � ↑ θ� α

Here, process � !���� P types after evaluation that the typing of � corresponds
to a correct value type and that the continuation P behaves as established by the
session type in ∆ · �̃@A : α . Analogous requirements hold for typing the input process
�?(�) � P .

130 Chapter 5. Modal Logics for Structured Communications

5.6.4 End Point Projection

The relation between global and local views at the specification of communication
protocols is given at the level of types. The central idea is that one can project
the behaviour (type) of a global specification given in terms of choreography into
a parallel composition of the behaviours of end-points. The mapping is far from
trivial, and need to preserve causal relations between messages and threads, namely
connectedness, well-threadedness and coherence. The next subsection presents a
recap from the work at [Carbone et al. 2007]. We will use these definitions (specially
Theorem 5.6.5 and Definition 5.6.6) in order to relate the work on end-point projections
with their corresponding logical counterpart. In order to give the formal definition
of end point projection, we first annotate global specifications with identifiers for
threads.

An annotated interaction, is an annotation of a choreography with �’s denoting
each thread in play. Annotated interactions are written �� ��� ���, and they are given
by the following grammar:

� ::= A�1→B�2 :�(�)� � | �1|��2

| A�1→B�2 : ���� ��� � | µ�XA� �
| A�1→B�2 :� [�� : ��]�∈I | XA

�

| if �@A� then �1 else �2 | 0

where each � is a natural number. We call �� ��� · · · occurring in an annotated interac-
tion, threads. Each � can be regarded as an abstract syntax built from a constructor
in its root (either a prefix or a parallel product), if the tree is originated from a single
thread, or a pair of threads if the interaction involves an interaction (session initia-
tion, message communication or selection/branching). The following is the consistent
annotation of (OB).

Cust1→AC2:ob(�1� �2)� Cust1→AC2 : �1�booking� ��� (OB�)
AC2→Cust1 : �2�offer� ��� Cust1→AC2 : �1�accept� ��� 0

Which, although simple, could be more complicated in the case there are more
than one session initiation involved in the choreography. Take for instance the case
where Cust→AC:ob(�1� �2) is decomposed by the sequence of processes Cust→AC:ob(�1)�
AC→Cust:ob(�2) We can have different annotations for Cust and AC. The sequence:
Cust1→AC2:ob(�1)� AC2→Cust3:ob(�2) generates a valid annotation as it places each
session initiation between the customer and the AC in different threads, any other
annotation would be invalid.

A choreography � is connected, if the interactions within � describe strongly con-
nected sequences of interactions where active/passive participants (the ones origi-
nating/receivers of an interaction). Informally, for each participant A in the set of

5.6. End-Point Calculus 131

participants of a choreography �, a communication activity originated by A should
have been immediately by a communication activity where A had acted as a receiver,
or been preceded by a self-contained action (evaluation of expressions, for instance).

Consistent annotations In order to provide meaningful projections between chore-
ographies and its end-points, we need to define a notion of “consistent annotation”,
that is, an annotation � such that it respects causality conditions, and can be re-
alised by a projection. Such conditions are: 1) Causal Consistency: if a participant
annotated with � is passive in an interaction (a receiver), then the subsequent inter-
action will be marked with � as well, or it will be a self-contained action, 2) Session
Consistency: Two actions in � identified by the same session name are annotated
with the same thread, and 3) Distinctness Condition: The input of session initiation
is always given a fresh thread.

The Well-threadedness condition ensures global specifications are free from un-
realisable dependencies among actions. We say � is well-threaded if it is connected
and it has a consistent annotation.

Mergeability Annotations in a choreography allow for the extraction of threads di-
rectly from the global behaviour. As threads are sequences of actions to be executed
at each end-point, we need to ensure that threads generated from choreographical
annotations are meaningful, in the sense that they project only to the required end-
points, and threads describing the behaviour of the same end point are encapsulated
(merged) on a single service description. Mergeability, denoted by ��, is the smallest
equivalence over typed terms up to ≡, closed under all typed contexts and

M − Sel
∀� ∈ (I ∩ H)�(P� �� Q�) ∀� ∈ J\H�∀� ∈ H\J�l� �= l�

� ⇤
�

Σ�∈J lj� P�
�

�� � ⇤ {Σ�∈H lh� P�}

M − Zero
���(P) = 0

P �� 0

When P �� Q, we say that P and Q are mergeable.
Above, a context is any end-point calculus process with some holes. (M-S��) is for

branching and says that we can allow differences in branches which do not overlap,
but we do demand each pair of behaviours with the same operation to be identical.

The operation P � Q allows for merging typed processes as long as they are
mergeable according to the rules above. P � Q is a partial commutative binary
operator on typed processes which is well-defined iff P �� Q. We see an example of
the merging rules, and the full set can be consulted in Appendix 5.E. The merging of
two branching processes � ⇤ {Σ�∈I li� P�} and � ⇤ {Σ�∈J} is given as:

� ⇤ {Σ�∈I li� P�} � � ⇤ {Σ�∈J li� Q�}
def
= � ⇤

⎧
⎨

⎩

Σ�∈I∩J li� P� � Q�
+Σ�∈I\J li� P�
+Σ�∈J\I li� Q�

⎫
⎬

⎭

That is, the resulting merge groups in a single session branching all the options
coming from multiple branches that have the same session key.

132 Chapter 5. Modal Logics for Structured Communications

Given a consistent annotation, we can project each of its threads onto an end-point
process. The thread projection TP(�� �) is a partial operation that uses the merge
operator, some of the rules are given below (the full set are included in Appendix
5.F):

TP(A�1→B�2 :�(�̃)� �� �)
def
=

⎧
⎨

⎩

���̃�� TP(�� �1) if � = �1
! �(�̃)� TP(�� �2) if � = �2
TP(�� �) otherwise

TP(A�1→B�2 :� [�� : ��]�∈I � �)
def
=

⎧
⎨

⎩

� � ��� TP(��� �) if � = �1
� ⇤ {

�
� ��} � TP(��� �) if � = �2

TP(�� �) otherwise

TP(if �@A�� then �1 else �2 � �)
def
=

�
if � then TP(�1� ��) else TP(�2� ��) if � = ��

TP(�1� �) � TP(�2� �) otherwise

Definition 5.6.3 (Coherent Interactions). Given a well-threaded, consistently anno-
tated interaction �, we say that � is coherent if the following two conditions hold:

1. For each thread � in �, T P(�� �) is well-defined.

2. For each pair of threads �1� �2 in � with �1 ≡A �2, we have T P(A� �1) �� T P(�� �2).

Below, ����(�) denotes the set of participants names occurring in �. Recall also
being coherent entails being well-typed, connected and well-threaded.

Definition 5.6.4 (End-Point Projection). Let � be a coherent interaction, and � be
a consistent annotation of �. Then the end point projection of � under a state σ ,
denoted EPP(�� σ), is given as the following network.

EPP(�� σ)
def
= ΠA∈����(�) A[Π[�]

�

��∈[�]
TP(�� ��)]σ@A

The mapping given above is defined after choosing a specific annotation of an
interaction. The following result shows the map in fact does not depend on a specific
(consistent) annotation chosen, as far as a global description has no incomplete
threads, i.e. it has no free session channels (which is what programmers/designers
usually produce).

Theorem 5.6.5 (Soundness and Completeness of End-point Projections[Carbone
et al. 2007]). Assume � is well-typed, strongly connected, well-threaded and coher-
ent. Assume further Γ � � � ∆ and Γ � σ . Then the following properties hold:

• (soundness) if EPP(�� σ) −−→ N then there exists �� such that (σ� �) −−→
(σ �� ��) such that EPP(��� σ �) ≺ ≡��� N .

• (completeness) If (σ� �) −−→ (σ �� ��) then there exist N such that EPP(�� σ) −−→
N and EPP(��� σ �) ≺ N .

5.7. ��: A logic for End Points 133

ψ� ω ::= A[m]� ψ (Located action)
| (�1 = �2)@A (equality)
| ψ ∧ ω (conjunction)
| ¬ψ (neg)
| ∃�� ψ (exists)
| ♦ψ (may)
| ψ | ω (parallel)
| end (inaction)

m ::= � ↓ � (Service Init Input)
| � ↑ � (Service Init Output)
| �?(�) (Input)
| � !��� (Output)
| � ⇤ l (Branching)
| � � l (Selection)

Figure 5.8: Syntax of ��

• (soundness with action labels) if EPP(�� σ)
m

−−→ N then there exists �� such
that (σ� �)

�
−−→ (σ �� ��) such that EPP(��� σ �) ≺ ≡��� N .

• (completeness with action labels) If (σ� �)
�

−−→ (σ �� ��) then there exist N such
that EPP(�� σ)

m
−−→ N and EPP(��� σ �) ≺ N .

Where ≡��� denotes equality induced by the unfolding of process recursion. The
asymmetric relation P ≺ Q indicates that P is the result of cutting off “unnecessary
branches” of Q, in the light of P’s own typing, is formally defined as follows:

Definition 5.6.6 (Pruning). Let Γ �A P ⇤ ∆ for Γ and ∆ minimal and Γ� Γ� �A Q ⇤ ∆.
If further we have Q ≡ Q0 | !R where Γ � Q0 ⇤ ∆, Γ� �A R and P � Q0, then we can
write: Γ �A P ≺ Q ∆ or P ≺ Q for short, and say P prunes Q under Γ; ∆. ≺ is
extended to networks accordingly.

5.7 ��: A logic for End Points

In this section, we introduce a simple logic for orchestrations. Having close resem-
blance with the global logic, �� expresses properties of end-points processes at the
local level. This is possible by presenting a logic featuring assertions for modali-
ties for locations [Cardelli & Gordon 2006], equality, value/name passing and spatial
operators [Caires & Cardelli 2001] The grammar of assertions is given in Figure 5.8.

The logic consists of the standard FOL operators ∧, ¬, and the existential quan-
tifier ∃. In ∃�� ψ, the variable � is meant to range over service and session channels

134 Chapter 5. Modal Logics for Structured Communications

and participants. Accordingly, it works as a binder in ψ. In addition to the standard
operators, we include an unspecified (decidable) equality on expressions (�1 = �2).
Our operators depend on the labels of the labelled transition system of the end point
calculus: A[m]� ψ represents the execution of an action m located at participant A,
followed by the assertion ψ execution of a labelled action m followed by the asser-
tion ψ; ◦ψ and ♦ψ denote the standard next and eventually operators from Linear
Temporal Logic. The spatial operator in ψ|χ denotes composition of formulae where
ψ and χ do not share variables, as we can see in the definition of its semantics
below.

Remark 5.7.1 (Derived Operators). We can get the full set of operators in �� by
standard derivation from the above presented set of operations:

tt = (0 = 0) ff = (0 = 1) (�1 �= �2) = ¬(�1 = �2)
◦ψ = ∃� � ∃A� A[m]� ψ ψ ∧ ω = ¬(¬ψ ∨ ¬ω) ∀�� ψ = ¬∃�� ¬ω
2ψ = ¬♦¬ψ [A[m]]� ψ = ¬A[m]� ¬ψ ψ ⇒ ω = ¬ψ ∨ ω

5.7.1 Examples of formulae in ��

Request - Reply For a classical request-reply system in the End Point Calculus:

P ::= ! �(�1� �2)� �1!��1�� �2?(�) � 0
B ::= ���1� �2�� �1?(�) � �2!��2�� 0

S����� ::= A[P]σ | B[Q]δ

We can describe some of the formulae that �� can verify of regarding to this
system. At the participant level, we can describe a formula enforcing an eventual
response after a given message exchange:

S����� |= A[� ↑ (�1� �2)]� A[�1!��1�]� ♦A[�2?(�)]� end

An dually for B. On its composition, we can use both the parallel product or the
magic wand operation to denote the fact that both participants should be present in
the interaction providing complementary actions. A partial description leaving out
session initiation constructions is given below:

S����� |= (A[�1!��1�]� ♦A[�2?(�)]� end) | (B[�1?(�)]� ♦B[�2!��2�]� end)

5.7.2 Semantics of ��

We now give a formal meaning to �� by providing a set of assertions describing the
semantics of each of the operators of the logic with respect to the LTS semantics of the
end point calculus described in the previous section. In particular we introduce the

5.7. ��: A logic for End Points 135

N |= A[m]� ψ
def
= N ≡ A[P]σ | M ∧ ∃Q� σ ��A[P]σ

m
−−→ A[Q]σ � ∧ A[Q]σ � | M |= ψ

N |= (�1 = �2)@A
def
= N ≡ A[P]σ ∧ σ (�1) = σ (�2)

N |= ψ ∧ ρ
def
= N |= ψ and N |= ρ

N |= ¬ψ
def
= N �|= ψ

N |= ∃�� ψ
def
= N |= ψ[�/�] (for some appropriate �)

N |= ♦ψ
def
= N −→∗ M and M |= ψ

N |= ψ | ρ
def
= N ≡ M | M � s.t. M |= ψ and M � |= ρ

N |= end
def
= N ≡ ε

Figure 5.9: Assertions of the Local logic

notion of satisfaction. We write N |= ψ whenever a network N satisfies a formula ψ
in ��. The relation |= is the maximum relation satisfying the rules given in Figure 5.9.

Definition 5.7.2 (Satisfiability, Validity and Logical Equivalence in ��).

• A formula ψ is satisfiable if there exists a network under which it is true, that
is, N |= ψ for some N .

• A formula ψ is valid if it is true in every network N , that is, N |= ψ for every
N .

• A formula ψ is a logical consequence of a formula ρ (or ψ logically implies ρ),
denote with an abuse of notation as ψ |= ρ, if every network N that makes ψ
true also makes ρ true up to alpha-renaming

• We say that a formula ψ is logical equivalent to a formula ρ, written ψ ≡|= ρ,
if ψ |= ρ iff ρ |= ψ.

• Given a set of formulae Ψ and ≡|=, the equivalence class of φ ∈ Ψ is the subset
of all elements in Ψ such that are logically equivalent to ψ:

[ψ] = {� ∈ Ψ|� ≡|= ψ}

We provide some auxiliary lemmas describing the relation of the logic with the
behaviours evidenced in end-point processes. The main result here is the preservation
of satisfiability in type-bisimilar processes. That is, if two processes are prunable
(the type bisimilarity introduced in the End Point Projection), then they satisfy the
same formula in ��.

Lemma 5.7.3 (Structural congruence preserves satisfiability). If M ≡ N and M |= ψ,
then N |= ψ.

136 Chapter 5. Modal Logics for Structured Communications

Proof. (Sketch) It follows by simple case analysis over the rules in ≡. The proof is
similar to the one in Lemma 5.5.4.

Lemma 5.7.4. if N |= ψ and ∃M�M
m

−−→ N and m �= τ , then M |= ρ ∧ ρ ⇒ ψ.

Proof. It follows by induction on the transitions leading to N in M
m

−−→ N and the
definition of N |= ψ.

We show the case for m = � ↓ �̃ ; all other cases follow similarly.

If M
�↓�̃

−−→ N then M ≡ A[! �(�)� P | P �]σ | M � and A[P | P �]σ � | M �. Assume
w.l.o.g. ρ = �� ↓ �̃�ψ. We have to show that M |= ρ and ρ ⇒ ψ.

From the definition of |=, we have that:

A[! �(�̃)� P | P �]σ | M � |= �� ↓ �̃�ψ iff M ≡ A[! �(�̃)� P]σ | M ��

∧∃Q�� σ �; A[Q�]σ � ∧ A[Q�]σ � | M �� |= ψ (5.13)

After the application of structural congruence rules, then A[! �(�̃)� P | P �]σ ≡
A[! �(�̃)� P]σ | A[P �]σ . Finally, we have that M �� = M | A[P �]σ and A[! �(�̃)� P]σ | M �� |=
�� ↑ �̃�ψ and �� ↑ �̃�ψ ⇒ ψ, which is what we had to show.

Definition 5.7.5 (Input-Output Correspondence). We say that a network N is
input-output correspondent if it contains no dangling inputs. That is for each � ∈
��������(N), then �̄ ∈ ��������(N).

Proposition 5.7.6 (Preservation of satisfiability in pruning). Let M� N input-output
correspondent networks, then M |= ψ and M ≺ N then N |= ψ.

Proof. From the definition of pruning, we have that M ≺ N iff Γ � M � ∆,
Γ� Γ� � N � ∆, N ≡ N0 | !N � where Γ � N0 � ∆, Γ � N � � and M � N0. We need
to prove that given N ≡ N0 | !N � then N |= ψ.

From Definition 5.7.5 and the definition of pruning, we know M�N0 and ��������(M) =
��������(N), so we are not filtering any formulae related to inputs that could be
lost in the pruning.

From the definition of |=, we have that N |= ψ | ρ iff N ≡ N �� | N ���. Substituting N0
for N �� and !N for N ���, then N |= ψ holds as a logical consequence of N |= ψ | ρ.

5.7.3 Translation from �� to ��

In the same way that we define that the end point projection relates operational
views of choreographies and end-points, we need to have a projection between the
declarative visions of choreographies and their corresponding visions in end points.
We do so by providing a mapping between the Global Logic and the Local Logic, as
expressed below:

Proposition 5.7.7 (�� Normal form). For all �� formulae φ, there exists φ� such
that φ ≡|= ∃��� ∃�B� φ�, where φ� is ∃ free.

Sketch. It follows from structural induction over φ

5.7. ��: A logic for End Points 137

Definition 5.7.8 (Logical Projection). We define a translation operator [[·]] from the
formulae of �� to the formulae of ��. To this end we will generate a set of formulae
for every process involved into the global formula. Let be φ a generic �� formula and
let φ = ∃���∃�B�φ be its normal form in virtue of Proposition 5.7.7, then [[·]] is defined
as follows.

[[∃��� ∃�B� Φ]] = ∃��� ∃�B� (
�

A∈parts(Φ)
[[Φ]]A)

[[tt]]A = tt
[[���� Φ]]A = [[�]]A� [[Φ]]A if A ∈ parts(�)
[[���� Φ]]A = [[Φ]]A if A /∈ parts(�)
[[♦Φ]]A = ♦[[Φ]]A ∨ [[Φ]]A
[[Φ ∧ Ψ]]A = [[Φ]]A ∧ [[Ψ]]A
[[Φ | Ψ]]A = [[Φ]]A | [[Ψ]]A
[[¬Φ]]A = ¬[[Φ]]A
[[end]]A = end
[[�1@A = �2@B]]A = (�1 = �2)@A

Where [[�]]A is defined as:

[[init A → B on �(�)]]A = A[� ↑ �]
[[init A → B on �(�)]]B = B[� ↓ �]
[[com A → B over � (�)]]A = A[� !���]
[[com A → B over � (�)]]B = B[�?(�)]
[[sel A → B over � : op]]A = A[� ⇤ op]
[[sel A → B over � : op]]B = B[� � op]

The logical projection takes a formula φ in expressed �� and generates the
corresponding �� formula for each of the participants contained in φ. The mapping
is standard, therefore we focus our description in the case where φ corresponds to
the action formula ���φ�. The projection is defined for each participant, so there
are corresponding parts for sender and receiver end-points in an action formula.
For example, in the case φ = �init A → B on �(�)�� φ�, we have that φ projects to
the parallel composition of formulae for participants A and B, which are defined as
A[� ↑ �]� [φ�]A and B[� ↓ �]� [φ�]B respectively. Analogous are the cases for in-session
communication and label selection.

We finish this section by providing proof of the soundness of the mapping between
logics. Theorem 5.7.10 states the correspondence between end-point projections and
logical projections between formulae.

Lemma 5.7.9 (End-point projections preserve ≡���). If � ≡��� �� then EPP(�� σ) ≡���
EPP(��� σ) where �� �� are consistent annotated interactions of �� ��.

138 Chapter 5. Modal Logics for Structured Communications

Proof. By induction on the structure of �, and Definition 5.6.4.

Theorem 5.7.10 (Preservation of satisfaction over logical translation). Let � a chore-
ography and � a consistent annotation of �. We can conclude that EPP(�� σ) |= [[φ]]
if � |=σ φ.

Proof. Follows by structural induction over � |=σ φ, definitions 5.6.4 and 5.7.8.
Let �����(�) a function returning the set of participants involved in a choreogra-

phy. We have the following cases:

Case � |=σ end: If � |=σ end then � ≡ 0, then � = 0. Using Definition 5.6.4,
EPP(0� σ) =

�
A ∈�����(0) A[

�
[�]

�
��∈[�] T P(0� ��)]σ@A = ε.

On the logical side, we have that [[end]] = end from definition 5.7.8. Then
ε |= end holds from the definition of |=.

Case � |=σ ¬φ: If � |=σ φ then � �|=σ φ. We have to show EPP(�� σ) �|= [[φ]].
We proceed by contradiction: Take EPP(�� σ) |= [[φ]], then � |=σ φ, which is a
contradiction to � |=σ ¬φ.

Case � |=σ φ ∧ χ : From the definition of |=σ , � |=σ φ ∧ χ iff � |=σ φ ∧ � |=σ χ .
From the induction hypothesis we have EPP(�� σ) |= [[φ]] and EPP(�� σ) |= [[χ]].
Then EPP(�� σ) |= [[φ]] ∧ [[χ]] from the definition of |=.

Case � |= φ | χ : From the definition of |=σ , � |=σ φ | χ iff � ≡ �1 | �2 such that
�1 |=σ φ and �2 |=σ χ .
From the induction hypothesis we know that, EPP(�1� σ) |= [[φ]] and EPP(�2� σ) |=
[[χ]].
From Lemma 5.5.4 we know that �1 | �2 |=σ φ.
From the definition of the end-point projection and Lemma 5.7.9, we know that
there exists N such that N ≡��� EPP(�1� σ) | EPP(�2� σ).
Then N |= [[φ]] | [[χ]] follows from the definition of |=.

Case C |=σ ���φ: From the definition of |=σ , � |=σ ���φ iff �σ� ��
�

−−→ �σ �� ���∧�� |=σ �

φ. We have to show that EPP(�� σ) |= [[���φ]].
From induction hypothesis, we have that:

EPP(��� σ �) |= [[φ]] ∧ EPP(��� σ �) ≺ N (5.14)

From (completeness with action labels) in Theorem 5.6.5 we have that, given
�σ� ��

�
−−→ �σ �� ��� then:

EPP(�� σ)
m

−−→ N ∧ EPP(��� σ �) ≺ N� (5.15)

5.7. ��: A logic for End Points 139

Now, we only have to show that N |= [[φ]], which holds after using Proposition
5.7.6 in EPP(��� σ �) ≺ N from Equation 5.14.

Case � |=σ ♦φ: From the definition of |=σ , � |=σ ♦φ iff (σ� �) −→∗ (σ �� ��) and �� |=σ
φ. Assume (σ� �) −→∗ (σ �� ��) as a finite sequence of transitions (σ� �) −→�

(σ �� ��). We proceed by induction on �.

Case � = 1: then � |=σ ♦φ iff (σ� �) −→1 (σ �� ��) ∧ �� |=σ � φ, which is the same
case as for � |=σ ���φ for any � . As � |=σ ���φ =⇒ EPP(�� σ) |= [[���φ]]
then we are done.

Case � > 1: then � |=σ ♦φ iff (σ� �) −→�−1 (σ ��� ���) −→1 (σ �� ��) ∧ �� |=σ � φ.
From the induction hypothesis we get (σ� �) −→�−1 (σ ��� ���) and ��� |=σ �� φ,
then � |=σ ♦φ.
Moreover, EPP(���� σ ��) = N and N |= [[φ]], with ��� a consistent annotation
of ���, then EPP(�� σ) |= ♦ ◦ [[φ]].
Finally, using subsumption we know that ♦[[φ]] =⇒ ♦ ◦ [[φ]]. Then
EPP(�� σ) |= ♦[[φ]], which is what we had to show.

Case � |=σ �1@A = �2@B: Then σ (�1@A) ⇓ � ∧ σ (�2@B) ⇓ � .
From [[·]], we know [[�1@A = �2@B]] = (�1 = �2)@A | (�1 = �2)@B.
We know that EPP(�� σ) |= (�1 = �2)@A | (�1 = �2)@B iff N ≡ A[P]σ | B[Q]σ � | M
and σ (�1) = σ (�2) ∧ σ �(�1) = σ �(�2), which follows directly from Definition 5.6.4.

5.7.4 �� : Proof System

Similarly to �� , �� is equipped with an inference system to deduct whether an end
point N respects a given formula ψ. We write N � ψ for the provability judgement
where N is a network and ψ is a formula in ��.

Definition 5.7.11 (Exhibition - End Points). We say that a network N exhibits a
formula ψ, written N � ψ, iff the assertion N � ψ has a proof in the proof system
given in Figure 5.10.

Let us now describe some of the inference rules of the proof system. The rule
L�Pend relates the inaction terms with the termination formula. The rules L�Pand
and L�Pneg denote rules for conjunction and negation in classical logic, respectively.
The rule for parallel composition is represented in L�Ppar; it does not indicate the
behaviour of a given end-point, but relates interactiing end-points with their corre-
spondend formulae: L�Ppar juxtaposes the behaviour of two processes and combines
their respective formulae by the use of a separation operator. The correspondence
between a network and a may formula is given by a formula realting each of the
possible labels it can contain.: L�Pbra can be explained as follows: suppose we are
given a process N = A[�⇤ {Σ���} � P�]σ , a set of branch labels {�� | � ∈ I} (determined

140 Chapter 5. Modal Logics for Structured Communications

L�Pinit−out
A[P]σ � ψ

A[����� P]σ � A[� ↑ �]� ψ

L�Pinit−in
A[P]σ � ψ

A[! �(�)� P]σ � A[� ↓ �]� ψ

L�Pmay1
N � ψ

N � ♦ψ

L�Pmay2
N � ψ ∨ ◦♦ψ

N � ♦ψ

L�Pbra
∀� ∈ I� A[P�]σ � ψ�

A[� ⇤ {
�

� li� P�}] �
�

�∈I A[� ⇤ li]� ψ�

L�Psel
A[P]σ � ψ

A[� � l� P] � A[� � l]� ψ

L�Pend

0 � end

L�Psend
A[P]σ � ψ

A[� !���� P]σ � A[� !���]� ψ

L�Prcv
A[P]σ � ψ

A[�?(�)� P]σ � A[�?(�)]� ψ

L�Pand
N � ψ1 N � ψ2

N � ψ1 ∧ ψ2

L�Pexp
N ≡ A[P]σ σ (�1) ⇓ � σ (�2) ⇓ �

N � (�1 = �2)@A

L�Pstruct
N � ψ N ≡ N �

N � � ψ

L�Pneg
N �� ψ

N � ¬ψ

L�PifT
σ (�) ⇓ tt A[P1]σ � ψ

A[if � then P1 else P2]σ � ψ

L�PifF
σ (�) ⇓ ff A[P2]σ � ψ

A[if � then P1 else P2]σ � ψ

L�Ppar
N1 � ψ1 N2 � ψ2
N1 | N2 � ψ1 | ψ2

L�P∃
∃� ∈ ��(N) ∪ {�}� N � ψ[�/�] � fresh

N � ∃�� ψ

L�Poplus1
A[P1]σ � ψ

A[P1 ⊕ P2]σ � ψ

L�Poplus2
A[P2]σ � ψ

A[P1 ⊕ P2]σ � ψ

Figure 5.10: Proof system for the End Point Calculus.

by typing) and we are given a proof that each A[σ]P�
satisfies ψ�, then we certainly

have a proof saying that every derivation of N should satisfy a guard �� followed
by a formula ψ�. L�Pinit−out and L�Pinit−in describe the session initiation formulae,
L�Pbra and L�Psel describe label branching and selection, and L�Prcv and L�Psend data
communication. Analogously, The rule P∃ says that in order to satisfy an ∃�� ψ, it
is sufficient to find a value � for � in the free names used by the network N or in
the free names used by the formula ψ. Rule Pexp denotes evaluation of local ex-
pressions. As can be noted by L�Pmay1 and L�Pmay2, the proof system encodes the
eventual operator as the unfolding recursion of ♦ψ. Pstruct proves that processes
that are structurally congruent bear correspondence with the same logical formula.
Conditional and internal choice rules L�PifT, L�PifF, L�Poplus1 and L�Poplus2 are also
standard.

Theorem 5.7.12 (Soundness). For any recursion-free network N , and every formula
ψ, if N � ψ then N |= ψ.

Proof. It follows by induction on the derivation of �.

Case Pend: trivial.

5.7. ��: A logic for End Points 141

Case L�Pinit−out: We have that N = A[����� P]σ and N � A[� ↑ �]� ψ. By L�Pinit−out,
we have that A[P]σ � ψ. From induction hypothesis we get that A[P]σ |= ψ.
We have to show that A[����� P]σ |= A[� ↑ �]� ψ. From the assertion semantics,

we have that N � |= A[� ↑ �]� ψ iff N � ≡ A[Q]σ | M ∧∃R � σ ��A[Q]σ
�↑�

−−→ A[R]σ � ∧
A[R]σ � | M |= ψ, which holds immediately from the selection of Q = ����� P
and the induction hypothesis.

Cases L�Pinit−in� L�Pbra� L�Psel� L�Psend� L�Prcv: Analogous to case L�Pinit−out.

Case L�Ppar: We have that N = N1 | N2 and N � ψ1 | ψ2 and by L�Ppar we
know that N1 � ψ1 and N2 � ψ2. From the induction hypothesis we know that
N1 |= ψ1 and N2 |= ψ2. We have to show N |= ψ1 | ψ2, which follows directly
from the assertion semantics for ψ1 | ψ2 and the induction hypothesis.

Cases L�Pand, L�Pexp: Analogous to Ppar.

Case L�Pneg: We have that N � ¬ψ, so by L�Pneg we get N �� ψ. By induction
hypothesis we have that N �|= ψ, which is necessary condition to deduce N |=
¬ψ.

Case L�P∃: We have that N � ∃��ψ and by L�P∃ we have that ∃� ∈ ��(N) ∪ {�}
and N � ψ[�/�]. By induction hypothesis we know that N |= ψ[�/�]. Take
� ∈ ��(N) or a fresh name, then we know that N |= ψ[�/�] with appropriate
� , and then N |= ∃��ψ follows from the definition of the assertion semantics.

Case L�Pmay1: We have that N � ♦ψ and by L�Pmay1 then N � ψ. By induction
hypothesis we have N |= ψ. We have to show that N |= ♦ψ, which follows
immediately from ψ ⇒ ♦ψ, so N |= ♦ψ.

Case L�Pmay2: We have that N � ♦ψ and by L�Pmay2 then N � ψ∨◦♦ψ. By induction
hypothesis we have that N |= ψ ∨ ◦♦ψ. We have to prove that N |= ♦ψ. By
definition of the assertion semantics, N |= ♦ψ iff N −−→∗ M� M |= ψ. We
can express N −−→∗ M as a finite sequence of transitions N −−→� M . We
have to show that there exists 0 ≤ � ≤ � such that N −−→� N � −−→� M and
N � |= ♦ψ. We proceed by second induction on � − �:

1. (� − � = �): Then N −−→0 N � −−→� M and M |= ψ, which is the same case
than the one for L�Pmay1, hence N |= ♦ψ.

2.(� − � = 1): Then N −−→1 N � −−→�−1 M and M |= ψ, so N |= ◦♦ψ, then
N |= ♦ψ holds true by direct application of the induction hypothesis.

3.(� − � = � ∧ 1 < � ≤ �): Then we have that N −−→� N � −−→� M and M |=
ψ. By second inductive hypothesis we have that N � |= ♦ψ. We can
decompose N −−→� N � as:

N −−→1 N �� −−→�−1 N � (5.16)

142 Chapter 5. Modal Logics for Structured Communications

The combination of the second inductive hypothesis and the assertion
semantics for equation 5.16 leads to N |= ◦♦♦ψ, which reduces to N |=
◦♦ψ using standard formula equivalences from LTL [Emerson 1991].

Case L�Pstruct: It follows by direct application of lemma 5.7.3.

Case L�PifT� L�PifF: We take only the proof for L�PifT, the other works similarly.

We have that N = A[if � then P1 else P2]σ , by L�PifT we have that σ (�) ⇓ tt and
A[P1]σ � ψ, and by induction hypothesis we have that A[P1]σ |= ψ. We have
to show that N |= ψ� Assume a σ s.t. σ (�) ⇓ tt (The other case is symmetric),
from the assertion semantics, we get that N � |= (�1 = �2)@A iff N � ≡ A[P]σ and
σ (�1) = σ (�2), which holds true from Lemma 5.7.9 and the induction hypothesis,
therefore N |= ψ.

Case L�Poplus1, L�Poplus2: It follows by direct application of lemma 5.7.4.

5.8 Conclusion and Related Work

This ongoing work aims at establishing the relations between imperative and declar-
ative views of structured communications, and it constitutes just the first step towards
a verification framework for communication-centred programs. Sumarising, this work
argues that one can have more flexible specifications in a declarative (logical) of
communication-centred programs than in an imperative one, and it presents ways
of verifying the correspondence of imperative views with respect to their declarative
ones, in terms of proof systems for each of the levels of abstraction here considered
(choreographies and end-points). Similarly, we establish a connection between the
methodology used for describing communication-centred programs imperatively (the
end-point projection) and a logical projection between logics, and prove that the
end-points generated from a global specification comply to the projections of global
formulae in the local logic. Some further development of the ideas here exposed
involve the proof about the completeness of �� in the same lines as the one in ��
, and exploring the termination of the proof checking algorithm. These results paves
the way towards the goal of veryfying structured communications, and one foresee
further implementation of model checking techniques where the connections between
declarative and imperative specifications can be exploited.

The development of a logical vision for structured communications have placed
us with questions about the correct set of operators that we want to have in the
logic. In this document we explored derivations of Hennessy-Milner Logics, where
the main properties of interest involved action and may formulae both at the level
of choreographies ond end-points. The may operator tell us important information
about the existance of an evolution where a property is fulfilled, but someimes it can
fail short by allowing other evolutions of the system that does not comply to the

5.8. Conclusion and Related Work 143

property. In [Carbone et al. 2011] we started studies on stronger versions of the may
modality, where one is allowed to express that a property is fulfilled in all possible
executions in an eventual state, and their implementation as part of the operators in
�� is foresee. Other improvements to the logics proposed include the use of fixed
points, essential for describing state-changing loops, and auxiliary axioms describing
structural properties of a choreography.

Related Work The connections between logics and session types have been ex-
plored in different works. Here we comment on some of the most representative
exponents, namely [Coppo & Dezani-Ciancaglini 2009, Caires & Pfenning 2010, Boc-
chi et al. 2010, Gordon & Fournet 2009, Berger et al. 2008]. In [Coppo & Dezani-
Ciancaglini 2009], a calculus combining notions of concurrent constraint programming
and name passing is proposed. The resulting calculus treats sessions as constraint
formulae representing the requirements to be satisfied in a client-server communica-
tion, in similar approach as the CC-Pi calculus explained above. As communications
are represented as constraints, the type discipline takes account on how processes
and constraints are related, guaranteeing that communications follow an structured
communications as in [Honda et al. 1998].

The relationship between session types and linear logics has been explored in
[Caires & Pfenning 2010], where the authors establish a bidirectional correspondence
between the session types and (dual) intuitionistic linear logic formulae. The cor-
respondence is tight, and relates the existence of a simulation between reductions
in session types and proof reductions in dual intuitionistic linear logic, and vice
versa. In [Pérez et al. 2012], the authors make use of the linear logic interpretation
of session types to describe a theory of logical relations for session types, allowing
one to study properties like termination of well-typed interactions, and behavioural
characterisations of session-typed isomorphisms as linear logic equivalences.

Type and effect systems have been used to study structured communications. In
[Gordon & Jeffrey 2003], the π- calculus is extended with labelled assertions describ-
ing progress in their communication steps. Assertions have complementary opera-
tions, and one can ensure that the communication is safe if all specified assertions
have their correspondent begin-end operations present in the run of a protocol. In
[Bonelli et al. 2005], the theory of session types with corresponding assertions is
studied, providing stronger guarantees for session types, in the sense that correspon-
dence assertions allows one to keep track of the changes on the data transmitted
over sessions and the way data is propagated across multiple parties.

Relations between types and logics can also give more information about the
nature of structured communications. In [Bocchi et al. 2010], authors proposed the in-
tegration of typed-based signatures with logical predicates as a method to guarantee
finer grained properties about the information in transit in structured interactions.
The proposed a methodology (Design by contract), constitutes an extension of mul-
tiparty session types [Honda et al. 2008] with global assertions, describing global
constraints on processes’ interactions in terms of predicate logic formulae. In this

144 Chapter 5. Modal Logics for Structured Communications

way, types not only describe causal relations between the inter-process communi-
cations, but they also fulfil constraints regarding the values in transit.

In [Berger et al. 2008], a proof systems characterising May/Must testing pre-orders
and bisimilarities over typed π-calculus processes is presented. The connection
between types and logics in such system comes in handy to restrict the shape of the
processes one might be interested, allowing us to consider such work as a suitable
proof system for calculi describing the communication of end points.

In the context of security, the work on F7 [Gordon & Fournet 2009] has explored the
integration of dependent and refinement types in a suite of functional programming
languages, with the aim of statically checking assertions about data and state, in
order to enforce security policies.

Appendix 5.A Global Calculus: Reduction Semantics

The reduction semantics of the Global Calculus is defined by the rules in Figure 5.11

G − RInit
� is fresh

(σ� A→B:�(�)� �) −→ (σ� �[�/�])

G − RStruct
� ≡ ��� (σ� �) −→ (σ �� ��) �� ≡ ����

(σ� ���) −→ (σ �� ����)

G − RRec
(σ� �[µX ��/�]) −→ (σ �� ��)

(σ� µX ��) −→ (σ �� ��)

G − RPar
(σ� �1) −→ (σ �� ��

1)
(σ� �1 | �2) −→ (σ �� ��

1 | �2)

G − RIfT
σ (�@A) ⇓ tt

(σ� if �@A then �1 else �2) −→ (σ� �1)

G − RIfF
σ (�@A) ⇓ ff

(σ� if �@A then �1 else �2) −→ (σ� �2)

G − RCom
σ (�@A) ⇓ �

(σ� A→B : ��op� �� ��� �) −→ (σ [�@B �→ �]� �)

Figure 5.11: Reduction Semantics for the Global Calculus

Appendix 5.B Global Calculus: Typing Rules

The global typing judgments are triples Γ � � : ∆ inductively defined by the typing
rules in Figure 5.12.

Appendix 5.C End-Point Calculus: Reduction Semantics

The reduction semantics for the end-point calculus follows the π-calculus and is
defined by the rules in Figure 5.13.

5.D. End-Point Calculus: Typing rules 145

G − TInit
Γ� �@B : (��)α � � � ∆ · �� [B� A] : α A �= B

Γ� �@B : (��)α � A→B:�(��)� � � ∆
G − TCom

Γ � � � ∆ · �� [A� B] : α Γ � �@A : θ Γ � �@B : θ � ∈ �� A �= B
Γ � A→B : ���� ��� � � ∆ · �� [A� B] : � ↑ θ� α

G − TComInv
Γ � � � ∆ · �� [B� A] : α Γ � �@A : θ Γ � �@B : θ � ∈ �� A �= B

Γ � A→B : ���� ��� � � ∆ · �� [B� A] : � ↓ θ� α
G − TChoice

Γ � �� � ∆ · �� [A� B] : α� � ∈ �� A �= B � ∈ I
Γ � A→B:� [�� : ��]�∈I � ∆ · �� [A� B] : &{�� : α�}�∈I

G − TChoiceInv
Γ � �� � ∆ · �� [B� A] : α� � ∈ �� A �= B � ∈ I
Γ � A→B:� [�� : ��]�∈I � ∆ · �� [B� A] : ⊕{�� : α�}�∈I

G − Tpar
Γ � �1 � ∆1 Γ � �2 � ∆2

Γ � �1 | �2 � ∆1 • ∆2

G − TIf
Γ � �@A : bool Γ � �1 � ∆ Γ � �2 � ∆

Γ � if �@A then �1 else �2 � ∆
G − TRec

Γ · X : ∆ � � � ∆
Γ � µX � � � ∆

G − TVar
Γ� X : ∆ well formed

Γ� X : ∆ � X � ∆

G − TZero
Γ well formed ∀� �= �� {��} ∩ {��} = ∅

Γ � 0 �
�

�
���[A�� B�]end

Figure 5.12: Global Calculus: Typing Rules

Appendix 5.D End-Point Calculus: Typing rules

The typing rules for the End Point Calculus are given in Figure 5.D, were the com-
patibility operators � and ⊙ are defined accordingly as:

1. Two service typings Γ1 and Γ2 are compatible (written Γ1 � Γ2) if they satisfy
the following conditions:

(a) if �@A ∈ dom(Γ�) then �@B �∈ dom(Γ�) for every B and for � �= � ;
(b) if �@A ∈ dom(Γ�) and �@B ∈ dom(Γ�) then A = B and Γ�(�@A) =

Γ� (�@B) for � �= � (up to α-renaming of bound names);
(c) if �@A ∈ dom(Γ�) and �@B ∈ dom(Γ�) then A = B and Γ�(�@A) =

Γ� (�@B) for � �= � (up to α-renaming of bound names);
(d) Γ1(�) = Γ2(�) for each � in Γ1�2;
(e) Γ1(X) = Γ2(X) for each X in Γ1�2.

2. Two session typings ∆1 and ∆2 are compatible (written ∆1 � ∆2) if they satisfy
the following conditions:

146 Chapter 5. Modal Logics for Structured Communications

E − RInit
�� �∈ fsc(P �) ∪ fsc(Q�) �̃ is fresh

A[! �(�̃)� P | P �]σ | B[���̃�� Q | Q�]σ � → (A[! �(�̃)� P | P | P �]σ | B[Q | Q�]σ �)[�̃/�̃]

E − RCom
σ � � ⇓ �

A[�?(�) � P | P �]σ | B[� !���� Q | Q�]σ � → A[P | P �]σ [� �→�] | B[Q | Q�]σ �

E − RSel
� ∈ I

A[� ⇤ {
�

� li� P�} | P �]σ | B[� � �� � Q | Q�]σ � → A[P� | P �]σ | B[Q | Q�]σ �

E − RIfT
σ � � ⇓ tt

A[if � then P1 else P2 | P �]σ → A[P1 | P �]σ

E − RPar
M → M �

M|N → M �|N

E − RIfF
σ � � ⇓ ff

A[if � then P1 else P2 | P �]σ → A[P2 | P �]σ

E − RSum
� ∈ {1� 2}

A[P1 ⊕ P2|R]σ → A[P�|R]σ

E − RRec
A[P [µX �P/X] | Q]σ | N → N �

A[µX �P | Q]σ | N → N �

E − RStruct
M ≡ M � M � → N � N � ≡ N

M → N

Figure 5.13: Reduction Relation for the End-Point Calculus

(a) if �̃ ∈ dom(∆1), �̃ ∈ dom(∆2) and �̃ ∩ �̃ �= ∅ then �̃ = �̃;
(b) if �̃ :⊥ ∈ ∆� then �̃ �∈ dom(∆�) for � �= � ;
(c) if �̃@A :α1 in ∆1 and �̃@A :α2 in ∆2 then fsc(α1) ∩ fsc(α2) = ∅;
(d) if �̃@A :α1 in ∆1 and �̃@B :α2 in ∆2 then α1 = α2 (for A �= B).

3. Γ1 ⊙ Γ2, defined whenever Γ1 � Γ2, is the minimum service typing such that:

(a) if �@A : α ∈ Γ� then �@A : α ∈ Γ1 ⊙ Γ2;
(b) if �@A : α ∈ Γ� and �@A : α �∈ Γ� then for � �= � , �@A : α ∈ Γ1 ⊙ Γ2;
(c) if �@A : θ ∈ Γ� (X : ∆ ∈ Γ�) then �@A : θ ∈ Γ1 ⊙ Γ2 (X : ∆ ∈ Γ1 ⊙ Γ2).

4. ∆1 ⊙ ∆2, defined whenever ∆1 � ∆2, is the minimum session typing such that:

(a) if �̃@A ∈ dom(∆�)\dom(∆�) for � �= � , then �̃@A : ∆(�̃@A) ∈ ∆1 ⊙ ∆2;
(b) if �̃ ∈ dom(∆�)\dom(∆�) for � �= � , then �̃ :⊥∈ ∆1 ⊙ ∆2;

5.E. End Point Projection: Merging 147

E − TInit�In
Γ �A P � ��@A : α � �∈ ���(Γ) ������(Γ)

Γ� ! �(��)α@A �A!�(��)� P � ∅

E − TInit�Out
Γ� � : (��)α@B �A P � ∆� �̃@A : α

Γ� � : (��)α@B �A ���̃�P � ∆
E�TBranch

� ∈ J J ⊆ I � ∈ �̃ Γ �A P� � ∆ · �̃@A : α�

Γ �A � ⇤
��

�∈I li� P�
�

� ∆ · �̃@A : � ⇤ &{�� : α�}

E�TVar

Γ� X : ∆ �A X � ∆

E�TSel
�� � ∈ I � ∈ �̃ Γ �A P� � ∆ · �̃@A : α�

Γ �A �� � li� P � ∆ · �̃@A : � ⇤ ⊕{�� : α�}

E�TRec
Γ� X : ∆ �A P � ∆
Γ �A µX � P � ∆

E�TInact

Γ �A 0 � ∅

E�TIn
� ∈ �̃ Γ �A P � ∆ · �̃@A : α Γ � � : θ

Γ �A �?(�) � P � ∆ · �̃@A : � ↓ θ� α

E�TOut
� ∈ �̃ Γ �A P � ∆ · �̃@A : α Γ � � : θ

Γ �A � !���� P � ∆ · �̃@A : � ↑ θ� α
E�TIf

Γ � �@A : bool Γ �A P � ∆ Γ �A Q � ∆
Γ � if �@A then P else Q � ∆

E�TSum
Γ �A P � ∆ Γ �A Q � ∆

Γ �A P ⊕ Q � ∆
E�TEnd

Γ �A P � ∆ {�̃} ∩ fsc(∆) = ∅
Γ �A P � ∆� �̃@A : end

E�TPar
Γ1 �A P � ∆1 Γ2 �A Q � ∆2 Γ1 � Γ2 ∆1 � ∆2

Γ1 ⊙ Γ2 �A P | Q � ∆1 ⊙ ∆2

E�TBot
Γ �A P � ∆ {�̃} ∩ fsc(∆) = ∅

Γ �A P � ∆� �̃ : ⊥

E�TPart
Γ �A P � ∆ Γ � σ@A

Γ �A A[P]σ � ∆

E�TInactNW

Γ �A ε � ∅

E�TBotN
Γ � N � ∆ �̃ ∩ ���(∆) = ∅

Γ � N � ∆ · �̃ : ⊥

E�TEndN
Γ � N � ∆ {�̃} ∩ fsc(∆) = ∅

Γ �A N � ∆� �̃@A : end
E�TParN

Γ2 � N1 � ∆1 Γ1 � N2 � ∆2 Γ1 � Γ2 ∆1 � ∆2
Γ1 ⊙ Γ2 � N1 | N2 � ∆1 ⊙ ∆2

Figure 5.14: End Point Calculus: Typing rules

(c) if �̃@A : α ∈ ∆� and �̃@A : β ∈ ∆� for � �= � , then �̃@A : α | β ∈ ∆1 ⊙ ∆2;

(d) if �̃@A ∈ dom(∆�) and �̃@B ∈ dom(∆�) for � �= � , then �̃ :⊥∈ ∆1 ⊙ ∆2.

Appendix 5.E End Point Projection: Merging

Definition 5.E.1 (Merge Operator). P � Q is a partial commutative binary operator
on typed processes which is well-defined iff P �� Q and satisfies the rules in Figure
5.15, where, in the right-hand side of each rule, we assume that each application of
the operator to, say, P and Q, is such that P �� Q.

148 Chapter 5. Modal Logics for Structured Communications

! �(�)� P � ! �(�)� Q
def
= ! �(�)� (P � Q)

����� P � ����� Q
def
= ����� (P � Q)

� !���� P � � !���� Q
def
= � !���� (P � Q)

�?(�) � P � �?(�) � Q
def
= �?(�) � (P � Q)

� ⇤ {Σ�∈I li� P�} � � ⇤ {Σ�∈J li� Q�}
def
= � ⇤

⎧
⎨

⎩

Σ�∈I∩J li� P� � Q�
+Σ�∈I\J li� P�
+Σ�∈J\I li� Q�

⎫
⎬

⎭

� � �� P � � � �� Q
def
= � � �� (P � Q)

if � then P1 else P2 � if � then Q1 else Q2
def
= if � then (P1 � Q1) else (P2 � Q2)

(P1 | P2) � (P3 | P4)
def
= (P1 � P3) | (P2 � P4)

(P1 ⊕ P2) � (Q1 ⊕ Q2)
def
= (P1 � Q1) ⊕ (P2 � Q2)

µX � P � µX � Q
def
= µX � (P � Q)

X � X
def
= X

P � 0
def
= P

P � Q
def
= P � � Q� (P ≡ P �� Q ≡ Q�)

Figure 5.15: End-Point Projection: Merging Rules

Appendix 5.F End Point Projection: Thread Projection

Definition 5.F.1 (Thread Projection). Given a consistently annotation �, the partial
operation TP(�� �) is defined as:

TP(A�1→B�2 :�(�̃)� �� �)
def
=

⎧
⎨

⎩

���̃�� TP(�� �1) if � = �1
! �(�̃)� TP(�� �2) if � = �2
TP(�� �) otherwise

TP(A�1→B�2 : ���� ��� �� �)
def
=

⎧
⎨

⎩

� !���� TP(�� �) if � = �1
�?(�)� TP(�� �) if � = �2
TP(�� �) otherwise

TP(A�1→B�2 :� [�� : ��]�∈I � �)
def
=

⎧
⎨

⎩

� � ��� TP(��� �) if � = �1
� ⇤ {

�
� ��} � TP(��� �) if � = �2

TP(�� �) otherwise

5.F. End Point Projection: Thread Projection 149

TP(if �@A�� then �1 else �2 � �)
def
=

�
if � then TP(�1� ��) else TP(�2� ��) if � = ��

TP(�1� �) � TP(�2� �) otherwise

TP(�1|���2� �)
def
= TP(A1� ��) | TP(A2� ��)

TP(µ�� :{�̃�}XA� �� �)
def
= µX � TP(�� �) if � ∈ {�̃�}, TP(�� �) otherwise.

TP(XA
�:{�̃�}� �)

def
= X if � ∈ {�̃�}, 0 otherwise.

TP(0� �)
def
= 0.

If TP(�� �) is undefined then we set TP(�� �) =⊥.

Above, we augment consistent annotations with a further annotation for recursions
µ�:{��}X and recursion variables XA

�:{��}, with {��} be the set of threads occurring in,
but not initiated in, � (a thread is initiated in � whenever it occurs passive in a
session initiation).

Chapter 6

Time and Exceptional Behaviour in
Multiparty Structured Interactions

Abstract: The Conversation Calculus (CC) is an extension of the π-calculus, intended
as a model of multiparty interactions. The CC is built upon the notion of conversa-
tion—a possibly distributed medium in which participants may communicate. We
study the interplay of time and exceptional behavior for models of structured com-
munications based on conversations. We propose C3, a timed variant of the CC in
which conversations feature both standard and exceptional behavior. The excep-
tional behavior may be triggered either by the passing of time (a timeout) or by an
explicit signal for conversation abortion. We present a compelling example from a
healthcare scenario, and argue that the combination of time and exceptional behavior
greatly enhances the significance and level of detail of specifications of structured
communications.

Contents
6.1 Introduction . 152
6.2 The Conversation Calculus . 156
6.3 C3: CC + Time + Compensations . 159
6.4 Expressiveness . 161
6.5 A Healthcare Compelling Example . 163

6.5.1 The Medicine Delivery Scenario. 164
6.6 Timed and Compensating Models. 165

6.6.1 Exceptional Behavior. 166
6.6.2 A timed model. 167
6.6.3 Putting all together. 168
6.6.4 The Semantics At Work. 168
6.6.5 Refining the Initial Model. 170

6.7 Related Work . 172
6.8 Concluding Remarks . 173
Appendix 6.A Further Examples: Running the Buyer-Seller example . . . 174
Appendix 6.B Proofs of Proposition 6.6.4 176

152 Chapter 6. Dealing with Time and Exceptions

6.1 Introduction

This paper is an initial step in understanding how time and forms of exceptional
behavior can be jointly captured in models of multiparty structured communications.

Time usually plays a crucial rôle in practical scenarios of structured communica-
tion. Consider, for instance, a web banking application: interaction between a user
and her bank generally takes place by means of a secure session, which is meant
to expire after a certain period of inactivity of the user. When that occurs, she must
exhibit again her authentication credentials, so as to initiate another session or to
continue with the expired session. In some cases, the session (or parts of it) has
a predetermined duration and so interactions may also be bounded in time. The
user may need to reinitiate the session if, for instance, her network connection is too
slow. Crucially, the different incarnations of time in interactions (session durations,
timeouts, delays) can be seen to be closely related to the behavior of the system
in exceptional circumstances. A specification of the web banking application above
would appear incomplete unless one specifies how the system should behave when,
e.g., the session has expired and the user attempts to reinitiate it, or when interaction
is taking longer than anticipated.

In real scenarios of structured communications, time then appears to go hand in
hand with exceptional behavior. This observation is particularly evident in healthcare
scenarios [Lyng et al. 2009]—a central source of motivation for our work. In healthcare
scenarios, structured communications often involve strict time bounds, as in, e.g.,
“monitor the patient every two hours, for the next 48 hours”. They may also include
interaction patterns defined as both a default behavior and an alternative behavior
to be executed in case of unexpected conditions: “contact a substitute doctor if the
designated doctor cannot be reached within 15 minutes”. Also, scenarios involve tasks
that may be suspended or aborted, as in, e.g.,“stop administering the medicine if the
patient reacts badly to it”.

Unfortunately, expressing appropriately the interplay of time and exceptional be-
havior turns out to be hard in known formalisms for structured communications. In
fact, although some of such formalisms have been extended with constructs for excep-
tional behavior (see, e.g., [Carbone et al. 2008, Caires et al. 2008, Capecchi et al. 2010]),
to the best of our knowledge none of these works considers constructs for timed be-
havior. To overcome this lack, here we introduce C3, a model of structured commu-
nications that integrates time and exceptional behavior in the context of multiparty
interactions. C3 arises as an extension of the Conversation Calculus (CC) [Vieira
et al. 2008, Vieira 2010] in which conversations have durations and are sensible to
compensations. Below, we first present the CC by means of a running example; then,
we introduce C3 by enhancing the example with time and exceptional behavior.

The CC is an interesting base language for our study. First, it is a simple model:
it corresponds to a π-calculus [Milner et al. 1992] extended with conversation contexts
(see below). Hence, the definition of C3 can take advantage of previous works on
extensions of the π-calculus with time and forms of exceptional behavior (see, e.g.,
[Berger & Honda 2000, Ferreira et al. 2010]). Second, the CC counts with a number of

6.1. Introduction 153

BuyerJ [new Seller · BuyService ⇐ buy↓!(����)�price↓?(�)�details↓?(�)]
| SellerJ [PriceDB | def BuyService ⇒ buy↓?(����)�askPrice↑!(����)�

priceVal↑?(�)�price↓!(�)�
join Shipper · DelivService ⇐ product↑!(����)]

| ShipperJ [def DelivService ⇒ product↓?(�)�details↓!(����)]

Figure 6.1: The purchasing scenario in CC.

reasoning techniques to build upon, in particular so-called conversation types [Caires
& Vieira 2010]. Third, and most importantly, the CC allows for the specification of
multiparty interactions, which are ubiquitous in many practical settings.

Fig. 6.1 gives a CC specification of the well-known purchasing scenario [Carbone
et al. 2007, Vieira 2010]. This scenario describes the interaction of a buyer and a
seller for buying a given product; the seller later involves a shipper who is in charge
of delivering the product. In the CC, a conversation context represents a distributed
communication medium where two or more partners may interact. Process �J [P] is
the conversation context with behavior P and identity �; process P may seamlessly
interact with processes contained in any other conversation context named �. The
model in Fig. 6.1 thus involves three participants: Buyer, Seller, and Shipper. Buyer
invokes a new instance of the BuyService service, defined by Seller. As a result, a
conversation on a fresh name is established between them; this name can then be
used to exchange information on the product and its price (the latter is retrieved by
Seller from the database PriceDB). When the transaction has been agreed, Shipper
joins in the conversation, and receives product information from Seller and delivery
details from Buyer. The model in Fig. 6.1 relies on the following service idioms which,
interestingly, can be derived from the basic syntax of the CC:

def � ⇒ P
def
= s↓?(�)��J [P] Define a service �

with behavior P

new � · � ⇐ Q
def
= (ν�)(�J [s↓!(�)] | �J [Q]) Create instance of a service �

located at �

join � · � ⇐ Q
def
= this(�)�(�J [�↓!(�)] | Q) Join instance of service �

located at �

The main design decision in defining C3 is considering time and exceptional behavior
directly into conversation contexts: C3 features timed, compensable conversation
contexts, denoted as � J [P ; Q]�κ . As before, � is the identity of the conversation
context. Process P describes the default behavior for �, which is performed while the
duration � is greater than 0. Observable actions from P witness the time passage in �;

154 Chapter 6. Dealing with Time and Exceptions

as soon as � = 0, the default behavior is dynamically replaced by Q, the compensating
behavior. Name κ represents an explicit abort mechanism: the interaction of � J
[P ; Q]�κ with a kill prefix κ† immediately sets � to 0.

An immediate and pleasant consequence of our extended conversation contexts is
that the signature of the service idioms (given above) can be extended too. Hence, C3
specifications can express richer information on timeouts and exceptional behavior. It
suffices to extend the idioms representing timed service definition and instantiation:

def � with (κ� �) ⇒ {P ; Q}
def
= s↓?(�)� �J [P ; Q]�κ

Timed service
definition

new � · � with (κ� �) ⇐ {P ; Q}
def
= (ν�) (�J [s↓!(�)] | �J [P ; Q]�κ) Timed service

instantiation

In the former we assume � and � are fresh in P and Q, and different from κ� �� �,
while in the latter � J [s↓!(�)] stands for � J [s↓!(�) ; 0]∞∅ . This way, we are able to
define timed, compensable extensions for service definition and instantiation idioms;
they rely on a compensation signal κ , a timeout value � , and a compensating protocol
definition Q. As a simple example, the C3 processes

ClientJ [new Provider · Service with (κ�� ��) ⇐ {P ; Q}]
ProviderJ [def Service with (κ�� ��) ⇒ {R ; T }]

may interact and evolve into (ν�) (ClientJ [�J [P ; Q]��κ�] | ProviderJ [�J [R ; T]��
κ�]).

Some related approaches (e.g. [Carbone et al. 2008]) distinguish the behavior
originated in the standard definition of a service from the behavior associated to
related compensating activities. In those works, the objective is to return to the
standard control flow by orderly escaping from compensating activities; handling
nested compensations thus becomes a delicate issue. In contrast, we do not enforce
such a distinction: we believe that in many realistic scenarios the main goal is
timely availability of services; hence, the actual origin of the offered services should
be transparent to the users. This way, e.g., for the users of a web banking application,
interacting with the main server or with one of its backups is irrelevant as long as
they receive the required services.

We illustrate these ideas by considering an extended version of the purchase
scenario in C3; see Fig. 6.2. Suppose a buyer who is willing to interact with a specific
provider only for a finite amount of time. She first engages in conversations with
several providers at the same time; then, she picks the provider with the best offer,
abandoning the conversations with the other providers. In the model, � P denotes the
replicated version of process P , with the usual semantics. We consider one buyer and
three sellers. NewBuyer creates three instances of the BuyService service, one from
each seller. The part of each such instances residing at NewBuyer can be aborted
by suitable messages on ��. The part of the protocol for BuyService that resides at
NewBuyer is similar as before, and is extended with an output signal com� which

6.1. Introduction 155

NewBuyerJ [
�

�∈[1��3] new Seller� · BuyService
with (��� ��) ⇐ {

P�
; Q�}

| Control
; CancelOrder]����

�

| �
�∈[1��3] Seller�J [PriceDB

| def BuyService
with (��� ��) ⇒ {

offer↓?(����)�
askPrice↑!(����)�
priceVal↑!(�)�
price↓!(�)�
join Shipper · DelivService ⇐

product↑!(����)
; R�}

; CancelSell�]����

| ShipperJ [def DelivService
with (�� �) ⇒ {

product↓?(�)�
details↓!(����)
; T }

; 0]�3�

where P�
def
= offer↓!(����)� price↓?(�)� comi↑!(�)� details↓?(�)

Control
def
= � (com1↑?(�)� (�†

2 | �†
3)

+com2↑?(�)� (�†
1 | �†

3)
+com3↑?(�)� (�†

1 | �†
2))

Figure 6.2: The purchasing scenario in C3.

allows to commit the selection of seller �. The commitment to one particular seller (and
the discard of the rest) is implemented by process Control. The duration of NewBuyer
is given by ���� ; its compensation activity (CancelOrder) is left unspecified. Seller�
follows the lines of the basic scenario, extended with compensation signals �� which
trigger the compensation process CancelSell�. Notice that while Q� controls the
failure of the �-th service invoked by NewBuyer, CancelOrder is meant to control the
failure of NewBuyer as a whole.

This extended example illustrates two of the features of C3: explicit conversation
abortion and conversations bounded in time. The first one can be appreciated in the

156 Chapter 6. Dealing with Time and Exceptions

selection implemented by Control, which ensures that only one provider will be able
to interact with NewBuyer, by explicitly aborting the conversations at NewBuyer
with the other two providers. However, Control only takes care of the interactions
at the buyer side; there are also conversation pieces at each Seller�, which are not
under the influence of Control (we assume �� �= ��). The “garbage-collection” of such
pieces is captured by the second feature: since such conversations are explicitly
defined with the time bound ��, they will be automatically collected (i.e. aborted)
after �� time units. That is, the passing of time avoids “dangling” conversation pieces.
This example reveals the complementarity between the explicit conversation abortion
(achieved via abortion signals) and the more implicit conversation abortion associated
to the passing of time.

In Section 6.2 we summarize the main definitions of the CC. Section 6.3 introduces
the syntax and semantics of C3. In Section 6.4 we discuss its expressiveness, by
comparing it to some other related languages. Then, in Section 6.5, we present a
compelling example from the healthcare domain, that is analysed on the light of
refinement relations for C3 in Section 6.6. We review related work in Section 6.7;
some concluding remarks are given in Section 6.8.

6.2 The Conversation Calculus

Here we briefly introduce the Conversation Calculus (CC, in the following). Further
details can be found at [Vieira et al. 2008, Vieira 2010].

The CC corresponds to a π-calculus with labeled communication and extended
with conversation contexts. A conversation context can be seen as a medium in which
interactions take place. It is similar to sessions in service-oriented calculi (see [Honda
et al. 1998]) in the sense that every conversation context has an unique identifier (e.g.:
an URI). Interactions in CC may be intuitively seen as communications in a pool of
messages, where the pool is divided in areas identified by conversation contexts.
Multiple participants can access many conversation contexts concurrently, provided
they can get hold of the name identifying the context. Moreover, conversations can
be nested multiple times (for instance, a private chat room within a multi-user chat
application).

Definition 6.2.1 (CC Syntax). Let � be an infinite set of names. Also, let �, �, and
χ be infinite sets of labels, variables, and recursion variables, respectively. Using �
to range over ↑ and ↓, the set of actions α and processes P is given below:

α ::=l�!(��)
| l�?(��)
| this(�)

6.2. The Conversation Calculus 157

P� Q ::=�J [P]

|
�

�∈I
α�� P�

| P | Q
| (ν�) P
| µX � P
| X

Above, �� and �� denote tuples of names and variables in � and �, respectively.
Actions can be an output l�!(��) or an input l�?(��), as in the π-calculus, with l ∈ �
in both cases. The message direction ↓ (read “here”) decrees that the action it is
associated to should take place in the current conversation context, while ↑ (read
“up”) decrees that the action should take place in the enclosing one. We often omit
the “here” direction, and write l?(�)�P and l!(��)�P rather than l↓?(�)�P and l↓!(��)�P .
The context-aware prefix this(�) binds the name of the enclosing conversation con-
text to � . The syntax of processes includes the conversation context �J [P], where
� ∈ � . We follow the standard π-calculus interpretation for guarded choice, par-
allelism, restriction, and recursion (for which we assume X ∈ χ). As usual, given�

�∈I α�� P�, we write 0 when |I| = 0, and α1� P1 + α2� P2 when |I| = 2. We assume
the usual definitions of free/bound variables and free/bound names for a process P ,
noted � � (P)� �� (P) and ��(P)� ��(P), respectively. The set of names of a process is
defined as �(P) = ��(P) ∪ ��(P). Finally, notice that labels in � are not subject to
restriction or binding.

The semantics of the CC is given as a labeled transition system (LTS). As cus-
tomary, a transition P

λ
−−→ P � represents the evolution from P to P � through action

λ. We write P
λ

−−→ if P
λ

−−→ P �, for some P �. We define P −−→ P � as P
τ

−−→ P �.
We use P −−→∗ P � to denote the transitive closure of P −−→ P �, and write P λ⇒ P �

when P −−→∗ λ
−−→−−→∗ P �.

Definition 6.2.2. Transition labels λ are defined in terms of actions σ , as defined by
the following grammar:

σ ::= τ | l�?(��) | l�!(��) | this λ ::= σ | � σ | (ν�) λ

Action τ denotes internal communication, while l�?(��) and l�!(��) represent an
input and output to the environment, respectively. Action this represents a conver-
sation identity access. A transition label λ can be either the (unlocated) action σ ,
an action σ located at conversation � (written � σ), or a transition label in which �
is bound with scope λ. This is the case of bounded output actions. ���(λ) denotes
the names produced by a transition, so ���(λ) = � if λ = l�!(�) or λ = �l�!(�) and
� �= �. A transition label λ denoting communication, such as l�?(��) or l�!(��) is subject
to duality λ. We write l�?(��) = l�!(��) and l�!(��) = {l�?(��) | �� ∈ �}.

Fig. 6.3 presents the LTS. There, ≡ stands for a structural congruence relation
on processes; see [Vieira 2010] for details. The rules in the upper part of Fig. 6.3

158 Chapter 6. Dealing with Time and Exceptions

(CC-I�)

l�?(��)� P
l�?(��)
−−→ P [��/��]

(CC-O��)

l�!(��)� P
l�!(��)

−−→ P

(CC-T���)

this(�)� P
� this
−−→ P [�/�]

(CC-O���)
P

λ
−−→ Q � ∈ ���(λ)

(ν�) P
(ν�) λ
−−→ Q

(CC-R��)
P

λ
−−→ Q � �∈ �(λ)

(ν�) P
(ν�) λ
−−→ (ν�) Q

(CC-S��)
α� � P�

λ
−−→ P �

� � ∈ I
�

�∈I α�� P�
λ

−−→ P �
�

(CC-P���)
P

λ
−−→ P � ��(λ)#��(Q)

P | Q
λ

−−→ P � | Q

(CC-C����)

P
λ

−−→ P � Q
λ

−−→ Q�

P | Q
τ

−−→ P � | Q�

(CC-R��)
P [X/µX � P]

λ
−−→ Q

µX � P
λ

−−→ Q

(CC-C�����)

P
(ν��) λ
−−→ P � Q

λ
−−→ Q� ��#��(Q)

P | Q
τ

−−→ (ν��) (P � | Q�)

(CC-L��L)

P
λ↓

−−→ P �

�J [P]
� λ↓

−−→ �J [P �]

(CC-H���L)

P
λ↑

−−→ P �

�J [P]
λ↓

−−→ �J [P �]

(CC-T���C�����)

P
σ

−−→ P � Q
(ν�) � σ
−−→ Q�

P | Q
� this
−−→ (ν�) (P � | Q�)

(CC-T���C����)
P

σ
−−→ P � Q

� σ
−−→ Q�

P | Q
� this
−−→ P � | Q�

(CC-T���L)

P
� λ↓

−−→ P �

�J [P]
� λ↓

−−→ �J [P �]

(CC-T��L)
P

τ
−−→ P �

�J [P]
τ

−−→ �J [P �]

(CC-T���L��L)
P

� this
−−→ P �

�J [P]
τ

−−→ �J [P �]

Figure 6.3: An LTS for CC. Rules with labels ending with “1” have a symmetric
counterpart (with label ending with “2”) which is elided.

follow the transition rules for a π-calculus with recursion. For instance, rule (CC-
O���) corresponds to the usual scope extrusion rule in the π-calculus. The rest of
the rules are specific to the CC. Rule (CC-T���) captures the name of an enclosing
conversation context. Rule (CC-L��L) locates an action to a particular conversation
context, and rule (CC-H���L) changes the direction of an action occurring inside a
context. Rules (CC-T���C�����) and (CC-T���C����) are located versions of (CC-
C����) and (CC-C���), respectively. Rule (CC-T���L��L) hides an action occurring
inside a conversation context. Rules (CC-T���L) and (CC-T��L) formalize how actions
change when they “cross” a conversation context.

6.3. C3: CC + Time + Compensations 159

6.3 C3: CC + Time + Compensations

As anticipated in the Introduction, the syntax of C3 extends that of the CC with timed,
compensable conversation contexts and a process for aborting running conversations:

Definition 6.3.1 (C3 Syntax). The syntax of C3 processes is obtained from that given
in Definition 6.2.1 by replacing the conversation contexts � J [P] with � J [P ; Q]�κ
(with �� κ ∈ � and � ∈ N0 ∪ {∞}) and by adding κ† to the grammar of processes.

Every notational convention introduced for CC processes carries over to C3 pro-
cesses. In particular, as in the CC, notice that labels in � are not subject to restriction
or binding. Unlike the LTS of CC, however, we assume a relation of structural con-
gruence with the usual axioms for the π-calculus only (i.e., axioms for α-conversion,
parallel composition, restriction, and the inactive process). In particular, because of
the timed nature of conversation contexts in C3 (on which we comment below), we
refrain from adopting the axioms for manipulation of conversation contexts given in
[Vieira 2010].

The notion of time in C3 is relative to each conversation context: it serves as a
bound on the duration of the interactions contained in it. The time signature � + 1
in a conversation context � J [P ; Q]�+1

κ can evolve into � if the enclosing process P
executes a “standard" action (i.e.: any action except a compensation), or to 0 in case
P fires a compensation. Hence, time in C3 is inherently local to each conversation
context, rather than global to the whole system. We find this rather fine account of
time in accordance with the intention of conversation contexts—distributed pieces
of behavior in which the whole communication is organized. Put differently, since
conversation contexts are essentially distributed abstractions of the participants of
the multiparty interaction, considering a time signature local to each of them is a
way of enforcing distribution. Also, as shown by our examples, this notion of time is
convenient for the interplay with exceptional behavior.

The LTS for C3 is defined by the rules in Fig. 6.4; transition labels are obtained by
extending the set of actions σ of the LTS of CC with a new action κ† . The convention
on rule names for symmetric counterparts given in the LTS of the CC carries over
to the LTS of C3. Moreover, for each of the left rules in Fig. 6.4—which describe
evolution in the default behavior and have rule names ending in “L”—, there is an
elided right rule characterizing evolution in the compensation behavior.

The passage of time in C3 is governed by the time elapsing function below.
Intuitively, one time unit passes by as a consequence of the action. (Actions with
durations different from one can be easily accommodated.)

Definition 6.3.2 (Time-elapsing function). Given a C3 process P , we use φ(P) to
denote the function that decreases the time bounds in P , inductively defined as:

φ(�J [Q ; R]�+1
κ) = �J [φ(Q) ; R]�κ φ(P | Q) = φ(P) | φ(Q) φ((ν�) P) = (ν�) φ(P)

φ(�J [Q ; R]0κ) = �J [Q ; φ(R)]0κ φ(P) = P Otherwise.

Given � > 0, we define φ� (P) = φ(P) if � = 1 and φ� (P) = φ(φ�−1(P)), otherwise.

160 Chapter 6. Dealing with Time and Exceptions

(I�)

l�?(��)� P
l�?(��)

−−→ P [��/��]

(O��)

l�!(��)� P
l�!(��)

−−→ P

(T���)

this(�)� P
� this
−−→ P [�/�]

(O���)
P

λ
−−→ Q � ∈ ���(λ)

(ν�) P
(ν�) λ
−−→ Q

(R��)
P

λ
−−→ Q � �∈ �(λ)

(ν�) P
(ν�) λ
−−→ (ν�) Q

(S��)
α� � P�

λ
−−→ P �

� � ∈ I
�

�∈I α�� P�
λ

−−→ P �
�

(C�����)

P
(ν��) λ
−−→ P � Q

λ
−−→ Q� ��#��(Q)

P | Q
τ

−−→ (ν��) (P � | Q�)

(C����)

P
λ

−−→ P � Q
λ

−−→ Q�

P | Q
τ

−−→ P � | Q�

(R��)
P [X/µX � P]

λ
−−→ Q

µX � P
λ

−−→ Q

(P���)
P

λ
−−→ P � ��(λ)#��(Q)

P | Q
λ

−−→ P � | φ(Q)

(T���C����)
P

σ
−−→ P � Q

� σ
−−→ Q�

P | Q
� this
−−→ P � | Q�

(T���C�����)

P
σ

−−→ P � Q
(ν�) � σ
−−→ Q�

P | Q
� this
−−→ (ν�) (P � | Q�)

(T��L)
P

τ
−−→ P �

�J [P ; Q]�κ
τ

−−→ �J [P � ; Q]�κ

(T���L��L)
P

� this
−−→ P �

�J [P ; Q]�+1
κ

τ
−−→ �J [P � ; Q]�κ

(T���L)

P
� λ↓

−−→ P �

�J [P ; Q]�+1
κ

� λ↓

−−→ �J [P � ; Q]�κ
(L��L)

P
λ↓

−−→ P �

�J [P ; Q]�+1
κ

� λ↓

−−→ �J [P � ; Q]�κ

(H���L)

P
λ↑

−−→ P �

�J [P ; Q]�+1
κ

λ↓

−−→ �J [P � ; Q]�κ

(A����)

κ† κ†

−−→ 0

(F���P���)

P
κ†

−−→ P �

P | �J [Q ; R]�κ
τ

−−→ P � | �J [Q ; R]0κ

(C���)
Q

λ
−−→ Q�

�J [P ; Q]0κ
λ

−−→ �J [P ; Q�]0κ
(F���T���L)

P
κ†

−−→ P � κ �= γ

�J [P ; Q]�γ
κ†

−−→ �J [P � ; Q]�γ

(F���I��)

P
κ†

−−→ P �

�J [P ; Q]�κ
τ

−−→ �J [P � ; Q]0κ

Figure 6.4: Rules for the LTS of C3.

We now describe some representative rules of the LTS of C3. Rule (P���) decrees
that executing an action in P decreases in one the time signatures of the conversation
contexts in Q. This is the only rule that appeals to the time-elapsing function. For
example, given an evolution P

λ
−−→ P �, an environment (ν�) (� J [P ; Q]�1κ) | � J

[R ; S]�2χ evolves into (ν�) (� J [P � ; Q]�1−1
κ) | φ(� J [R ; S]�2χ) using (L��L) (R��) and

6.4. Expressiveness 161

(P���). Rules formalizing communication and closing of scope extrusion do not affect
the passage of time. In � J [� J [(ν�) (� J [P ; Q]�1κ) | � J [R ; S]�2χ ; U]�3

ψ ; V]�4ω , timer

�4 will be updated after further applications of (T���L) unless � J [R ; S]�2χ
λ̄

−−→, in
which case rules (T���C�����) and (T���L��L) are applied and only timers �1� �2� �3
are updated. This means that only the actions leading to a synchronization—but
not the synchronization itself—contribute to the passage of time. Visible actions are
privileged in the sense that they affect the time bound of the enclosing conversation
context—compare rules (T���L) and (T��L).

Rules (A����), (F���P���), and (C���) formalize the essence of the handling of
abortion signals and exceptional behavior in C3: the first formalize such signals, the
second represents the abortion of a conversation context, and the third formalizes the
behavior of an aborted conversation context. Intuitevely, compensation signals travel
vertically upwards over levels of nested conversations: in � J [� J [κ†

� ; Q]��κ� ; R]��κ� ,
the compensation signal κ†

� will cross its own conversation context and affect the
outermost conversation following rule (F���T���L). Compensation signals can also
affect conversations located in surrounding contexts: �J [κ†

� ; Q]��κ� | �J [R ; S]��κ� will
make conversation � entering into its compensation mode using (F���P���), provided
κ� �= κ�. Finally, compensation signals become unobservable if they do lead to
abortion (cf. rule (F���I��).

6.4 Expressiveness

Here we comment on the expressiveness of C3 by relating its constructs to those
present in similar languages. Below, we consider the fragments of C3 without com-
pensation signals and without time (noted C3−� and C3−� , respectively). While in
C3−� there are no explicit abortion signals but conversation contexts have time
bounds, in C3−� there are abortion signals, but all conversation contexts have ∞
as time bound. Considering these fragments of C3 can be helpful to illustrate its two
main features. Our treatment is largely informal, as our objective is to shed light
on the nature of C3. More formal comparisons of relative expressiveness are left for
future work.

6.4.0.1 C3 and constructs for exception handling.

We consider the extension of the CC given in Section 6.2 with a try-catch operator.
We first extend Definition 6.2.1 with a new action throw and a new process construct
try P catch Q. Then, we extend the LTS of CC with rules TC�-TC� in Figure 6.5. This
is the semantics of exception handling considered in works such as, e.g., [Bravetti &
Zavattaro 2009]. Let us refer to this extension as CCtc1.

In C3−� we can model a try-catch construct with such a semantics, as follows:

[[try P catch Q]]�� = �J [[[P]]�� ; [[Q]]��]∞κ� [[throw]]�� = κ†
�

162 Chapter 6. Dealing with Time and Exceptions

(TC�)

throw� P
throw
−−→ P

(TC�)
P

throw
−−→ R

P | Q
throw
−−→ R

(TC�)
P

throw
−−→ R

�J [P]
throw
−−→ R

(TC�)
P

λ
−−→ P � λ �= throw

try P catch Q
λ

−−→ try P � catch Q

(TC�)
P

throw
−−→ R

try P catch Q
τ

−−→ Q
(TC�)

P
throw
−−→ R

try P catch Q
τ

−−→ Q | R

Figure 6.5: LTS rules for an extension of the CC with try-catch

with [[·]]�� being an homomorphism for the other operators, and κ� and � being distin-
guished fresh names. The encoding captures the semantics of the try-catch operator
thanks to the fact that a compensation signal can have effect on the conversation
context enclosing it (cf. rule F���I�� in Fig. 6.4).

A compositional encoding in the opposite direction, i.e., an encoding of C3−� into
CCtc1, in which try-catch blocks are used to model conversation contexts, appears
difficult. This is because of the nature of compensation in C3: extended conversation
contexts can be aborted by both internal and external signals (cf. rules (F���I��) and
(F���P���) in Fig. 6.4), and not only by signals inside the try block. A possibility is
to define an encoding that, using the number of conversation contexts and abortion
signals in the process, creates a try-catch for every possible combination. This is
a rather unsatisfactory solution, as interactions may give rise to new conversation
contexts, and so the number of “global” try-catch constructs required for the encoding
may not be predictable in advance. Based on these observations, we conjecture that
C3−� is strictly more expressive than CCtc1.

Notice that an encoding such as the above would not work with a CC with
try-catch with a different semantics. For instance, semantics enforcing advanced
treatment of nested try blocks [Xu et al. 1998] may be difficult to handle. Let us
consider CCtc2, the extension of CC with the semantics given by rules TC�-TC� and
TC� in Fig. 6.5. This is the semantics used in, e.g., [Caires et al. 2008]. The crucial
difference between rules TC� and TC� is that in the latter the state of the try-block
just after the exception has been raised (i.e., R in both rules) is preserved when the
exception block (i.e., Q) is called for execution, while in the former such a state is
discarded. It is not obvious how to represent such a preservation of state in C3, as the
standard part of the conversation context is completely discarded when the context
is aborted, and there is no way of accessing it afterwards. We thus conjecture the
non existence of an encoding of CCtc2 into C3−� .

6.5. A Healthcare Compelling Example 163

6.4.0.2 Time and Interruptions in C3.

From the point of view of exceptional behavior, time in C3 can be assimilated to an
interruption mechanism over the standard part of a conversation context. We now
argue that this character of timed behavior provides a gain in expressiveness from
the basic CC to C3−� .

Let P = µX � l1!(�)�X be the persistent process which is always ready to offer
an output on l1. When P is placed in a CC conversation context, we can infer an
infinite sequence of transitions �J [P]

� l1!(�)
−−→ �J [P]

� l1!(�)
−−→ · · · . Now consider the C3−�

process S = �J [P ; l2!(�)]� , with P as before and some finite � > 0. Using the LTS
of C3−� , we infer that P evolves until � = 0, when it gets interrupted permanently
and the execution control passes to the compensation part of the context. Hence, the
observable behavior of S consists of � output signals on l1, followed by a final output
signal on l2. This allows us to conjecture that an encoding of C3−� into CC, which
preserves persistent behavior, does not exist.

It is useful to consider the situation for persistent behavior when CC is extended
with try-catch constructs as the described above. Let us first consider CCtc1. An en-
coding of C3−� into CCtc1 could exploit the fact that the semantics of try-catch allows
to interrupt the behavior of a persistent process placed in the try block. However, it
is not obvious at all where to place the throw prefixes so as to properly model the
passage of time. That is, process interruption could be encoded but not at the right
time: hence, it is not possible to guarantee that the behavior of the C3−� process is
faithfully captured. Therefore, we conjecture that there is no encoding of C3−� into
CCtc1, up to some notion of operational correspondence sensible to timed behavior.
Interestingly, when considering CCtc2, the conjecture appears somewhat more cer-
tain since, as discussed before, the semantics of CCtc2 does preserve the last state
of the try block before the exception is raised. That is, such a semantics does not
implement interruption of the try block. This way, using P defined as above, process
S � = try P

f
throw�0 catch l2!(�) would exhibit persistent behavior, even after the ex-

ception has been raised. Hence, outputs on l1 and the output l2 would be observable
(interleaved) at the same time.

6.5 A Healthcare Compelling Example

Here we present a compelling example for C3: a medicine delivery scenario, adapted
from [López et al. 2009, Campadello et al. 2006], which features time and exceptional
behavior. After presenting the scenario, we present a series of models that gradually
capture its main aspects. We begin with a basic model in CC, then we present two
enhanced models: one capturing compensating behavior (using C3−�) and another
capturing time (using C3−�). We then show how C3 allows a more comprehensive
specification of the scenario.

164 Chapter 6. Dealing with Time and Exceptions

Pa
tie

nt
Em

er
g

en
cy

C

en
te

r

Request
Assistance

Select Social
Worker

Appoint Social
Worker

So
ci

al

W
or

ke
r

Accept
Request

Retrieve
Medicine

Receive
Authorization

Engage
Social
Worker

Authorize
Social
Worker

Verify
Credentials

Authenticate
with patient

Deliver
medication

Medicine

S.W.
Credentials

Auth. Key
Req.

Service

Service
Accept

S.W.
Credentials

Req.
Service

Figure 6.6: BPMN diagram for the medicine delivery scenario.

6.5.1 The Medicine Delivery Scenario.

We consider a simplified version of a medicine delivery scenario [López et al. 2009,
Campadello et al. 2006]. Alice is a patient recently discharged from a hospital after a
cardiac arrest. Sensors attached to the patient are monitoring her health conditions
24 hours a day, and data is controlled and processed in an Emergency Response
Center (EC). The medicine delivery scenario takes place when Alice feels weak and,
instead of driving to the pharmacy to get the medicine, asks to be supported by
the EC. To this end, the EC requests a Social Worker (SW) to bring the medicine
to Alice. There are both mobile SWs (in charge of requests outside the EC) and
in-house SWs (the rest). If none of the mobile SWs can attend the request then an
in-house SW is contacted. The selected SW gets appointed by the EC by sending
him authorization keys for receiving the medicine and communicating with Alice. The
SW can now acknowledge the request and go to the pharmacy. After a successful
message exchange between Alice’s terminal and the EC, the SW is authenticated and
entitled to receive the medicine. Finally, the SW must authenticate to Alice in order
to deliver the medicine. Figure 6.6 presents a specification of the above scenario
in the Business Process Modeling Notation (BPMN 2.0), the de-facto notation for
executable business processes.

6.5.1.1 Some Considerations: Time and Exceptions

Apart from the functional requirements exhibited on the previous case study, non-
functional requirements about the availability of the system are very important in this
scenario. For instance, it is necessary to ensure that in the exceptional circumstance
in which there are no available social workers nearby the patient, there is always
someone who can complete the process and provide the medication. These are local
policies (in that they rule the execution of an agent in the system) but have effects
at a global level (as they may refer to other agents apart from the ones currently

6.6. Timed and Compensating Models. 165

T
def
= P������ | EC | SW where:

P������
def
= AJ [new B · AB ⇐ b!(�)� a?(�� �)� a2?(�� �)� a3?(�)� X�]

EC
def
= BJ [�def AB ⇒ b?(�)� join C · BC ⇐ c!(�)� acc?(�)� (ν��) a!(�� ��)� c!(��)� X�]

SW
def
= C J [def BC ⇒ c?(�)� ((ν�) acc!(�)� c?(��)� a2!(�� ��)� a3!(�))� X�]

Figure 6.7: Medicine Delivery Scenario: Basic Model in CC

executing in the current conversation). Timed aspects intrinsically related to the
scenario are also inherently global. For instance, studies in [Rittenberger et al. 2006]
show that patients with out-of-hospital cardiac arrests who are not provided with
medicine within 17 minutes have higher chance of death. This kind of policies do
not pertain the behavior of a single agent, but they involve global conditions applied
to the whole interaction of roles involved in the process. That is, they are global
policies which have specific consequences in the involved principals.

6.6 Timed and Compensating Models.

We proceed to incrementally define models for the medicine delivery scenario. We
shall exploit variants of CC and C3 enhanced with special observable actions, or tests:

Definition 6.6.1. Let � be a set of names, with � ∩ � = ∅. The set of testing
processes is obtained by extending CC and C3 as follows: the grammar of prefixes
α is extended with a testing prefix X�, with � ∈ �. Also, the associated LTS is
extended with the rule (T���) X��P

�
−−→ P . Given a process P , we define ��(P) =

{� ∈ � |X� occurs in P}

We sometimes call � the set of testing names; observe that via the above definition
we also obtain extensions for C3−� and C3−� . Our first model is a CC specification
giving only the basic interacting behavior in the medicine delivery scenario. We call
this process T , and is presented in Figure 6.7. There are three conversation contexts,
one for each agent involved in the business process: A (the patient), B (the EC), and
C (the SW). Observe how we have added test prefixes at the end of each conversation
context; this will be useful to observe the completion of the behavior of each agent.
Interactions are meant to occur between A and B first, then between B and C , and
finally between C and A. More precisely, A starts the protocol by invoking service
AB, located at B. The body of new B · AB ⇐ · · · first receives a request from A,
and then extends the established conversation so as to include C , using the idiom
join C ·BC ⇐ · · · . Once A� B, and C share the conversation, they are able to interact
between each other. This is evident in interactions on c and acc between B and C
and interactions on a between A and B. Once the prefix X� is emitted, A and C can
interact on a2 and a3, and tests X��X� are observed.

166 Chapter 6. Dealing with Time and Exceptions

SF def
= P������ | EC | SW | N���� where:

P������
def
= AJ [new B · AB ⇐

b!(�)� (a?(�� �)� a2?(�� �)� a3?(�)� X� + κ†
A) ;

new B · AB ⇐
b!(�)� (a?(�� �)� a2?(�� �)� a3?(�)� X�]∞κA

EC
def
= BJ [�def AB ⇒ b?(�)� join C · BC ⇐ c!(�)� (dny?(�)� κ†

B

+
acc?(�)� (ν��) a!(�� ��)� c!(��)� X�) ;

κ†
A |

� def AB ⇒ b?(�)�
join D · BD ⇐

d!(�)� acc?(�)� (ν��) a!(�� ��)� c!(��)� X�]∞κB

SW
def
= C J [def BC ⇒

c?(�)� ((ν�) (dny!(�)
+

acc!(�))� c?(��)� a2!(�� ��)� a3!(�))� X� ; 0]∞κC

N����
def
= DJ [def BD ⇒ d?(�)� ((ν�) acc!(�)� d?(�)� a2!(�� �)� a3!(�))� X� ; 0]∞κD

Figure 6.8: Medicine Delivery Scenario: Exception-only model in C3−�

6.6.1 Exceptional Behavior.

We now consider two different variants of model T . The first one, denoted SF , extends
T with compensation activities only. The second variant, denoted ST , extends T with
explicit timed behavior and is described later on. The model for SF is given in C3−� ,
and is presented in Figure 6.8. Essentially, SF extends T by giving a patient the
capability of contacting twice the EC, either at patients’ discretion or fired by the
sensors attached to him. Moreover, the SW can either accept or ignore the request;
in the former case the EC will compensate by contacting its in-house SW.

The model of the medicine deliver scenario in C3−� differs from that in CC in three
ways. First, it allows the SW to refuse the engagement in the interaction; this is
modeled as a non-deterministic output on dny. Second, it includes the specification
of a nurse that will take care of delivering of the medicine in case the SW cannot
be engaged in the interaction. Third, it allows for all conversation contexts to have
compensating activities. In case of the patient, it abstracts the fact that he can call
for attention more than once in case the service is not provided. As for the EC, it can
use compensating activities to restart the requests refused by the SW and appoint
a nurse instead. Here, we model explicit compensations (e.g., the emission of κ†

B in
EC) and chains of compensations (i.e., the compensating part of A follows after the

6.6. Timed and Compensating Models. 167

ST def
= P������ | EC | SW | N���� where:

P������
def
= AJ [new B · AB ⇐ b!(�)� a?(�� �)� a2?(�� �)� a3?(�)� X� ;

new B · AB ⇐ b!(�)� a?(�� �)� a2?(�� �)� a3?(�)� X�]�A

EC
def
= BJ [�def AB ⇒ b?(�)� join C · BC ⇐

c!(�)� (0
+

acc?(�)(ν��) a!(�� ��)� c!(��)� X�) ;
� def AB ⇒ b?(�)� join D · BD ⇐ d!(�)� acc?(�)(ν��) a!(�� ��)� c!(��)� X�]�B

SW
def
= C J [def BC ⇒ c?(�)� ((ν�) acc!(�)� c?(��)� a2!(�� ��)� a3!(�))� X� ; 0]�C

N����
def
= DJ [def BD ⇒ d?(�)� ((ν�) acc!(�)� d?(�)� a2!(�� �)� a3!(�))� X� ; 0]�D

Figure 6.9: Medicine Delivery Scenario: Model in C3−�

compensating part of B has been activated). A model such as SF improves T in that
it is able to express exceptional behavior that is represented explicitly, but falls short
to express more implicit forms of exceptional behavior that have to deal with time
bounds. Despite its enhanced expressiveness for process compensations, a model in
C3−� is yet not able to deal with constraints involving the evolutions of the whole
system, as required in these kind of scenarios. In fact, although there is not a notion
of “global time” in this model, the (local) evolution of time in a process does affect
the time signatures of surrounding processes (i.e., located within and in parallel to
it). Hence, one may argue that via time signatures we are able to express a general
notion of evolution that goes beyond local change.

6.6.2 A timed model.

We consider now a model where compensations are fired by implicit time constraints
only. Process ST in Figure 6.9 formalizes in C3−� the case where A needs to get the
medicine within �A time units. ST is an extension of T ; the main improvements are the
compensation parts in conversation contexts, which are associated to time bounds.
Reaching the time bound in �A means that the manual request for attention fired
by the patient has expired, so the exceptional behavior will automatically restart
the request. Similarly for the EC: once time bound �B is reached, it will migrate
the request for service from the SW (cf. conversation context C) to the Nurse (cf.
conversation context D). This is in line with the treatment of timed aspects as outlined
by clinical guidelines, such as the described in [Terenziani et al. 2000].

As opposed to SF , in ST we lack explicit signals to trigger a compensation activity.
This entails some limitations in our model. For instance, in the case that the mobile
SW responds negatively to a request from a EC, then the EC should be able to
immediately enable a compensation activity and send its on-site SW. In general,

168 Chapter 6. Dealing with Time and Exceptions

triggering exceptional behaviors through time passing only is far from ideal in the
case of compensation activities which need to be triggered as soon as some certain
event occurs.

6.6.3 Putting all together.

Exploiting the best features of SF and ST , a model of the medicine delivery scenario
in C3 is presented in Figure 6.10. Process S extends T with differences in the
interaction between conversations. In particular, the body of the service AB located
at B contains calls to DB, a database containing the contacts of available SWs.1 The
direction of the messages between DB and the service is ↑, as communications have
to cross the boundary defined by the service definition. AB describes the process
that first selects one of the SWs and then forwards the request for attention started
by the patient. Process C� represents the behavior of the �-th instance of a mobile
SW. As in SF and ST , in S the SW can either accept or ignore the request; in the
latter case the process iterates until some SW is appointed. Upon acceptance, B will
generate new credentials identifying the SW (represented in the model with a fresh
name �); in turn, these will be transmitted to the patient for further checking.

Two important exceptional behaviors can be observed in this example. The first
one concerns the prompt response required by the patient. In case the request for
attention is not delivered on due time and the patient starts feeling dizzy, sensors
attached to patient’s body can detect a decrease in his health conditions (say, blood
pressure) and restart automatically the medicine delivery process in order to ensure
the request call is answered. The behavior of the sensors here is abstracted by
a non-deterministic choice. This behavior is present in the compensated part of
A, and it will be fired either when the expected time �A has been exhausted, or
when the EC reports unavailability (represented by signal κ†

A). The second timeout
refers to internal process requirements from B, which stipulate that each request for
attention has to be attended within �B time units. This is irrespective from any further
communication done elsewhere. The EC is fault tolerant, and on unavailability of a
mobile SW, it will rely on the nurse.

6.6.4 The Semantics At Work.

Let us illustrate the LTS of C3 by revisiting the health care scenario discussed in the
introduction. We describe the evolution of a modified S where the EC provides fault-
handling with respect to its local database. This example is useful to appreciate the
way time in C3 is defined. On failure to find available mobile SWs, the system will
emit a signal NA↑!() that later will be used to spawn the compensation mechanisms
of the EC and further contact its in-house SW. The modified system is as in Fig. 6.10

1We could have well invoked a database both in SF and ST , but we refrained to do so in order to
keep those models simple.

6.6. Timed and Compensating Models. 169

S
def
= P������ | EC | SW� | N���� where

P������
def
= AJ [new B · AB ⇐ b!(�)� (a?(�� �)� a2?(�� �)� a3?(�)� X� + κ†

A) ;
new B · AB ⇐ b!(�)� a?(�� �)� a2?(�� �)� a3?(�)� X�]�A

κA

SW�
def
= C�J [def BC ⇒ c?(�)� ((ν�) (dny!(�) + acc!(�))� c?(��)� a2!(�� ��)� a3!(�))� X� ; 0]�C

κC

N����
def
= DJ [def BD ⇒ d?(�)� ((ν�) acc!(�)� d?(�)� a2!(�� �)� a3!(�))� X� ; 0]∞κD

EC
def
= BJ [DB | � def AB ⇒ b?(�)� µX � req↑!(�)� rep↑?(�)�

join C� · BC ⇐ c!(�)� (dny?(�)� X + acc?(�)� (ν�) a!(�� �)� c!(�)) ;

κ†
A | DB | � def AB ⇒ b?(�)� join D · BD ⇐ d!(�)� acc?(�)� (ν�) a!(�� �)� d!(�)]�B

κB

Figure 6.10: The medicine delivery scenario in C3

with the following definitions for A and B:

AJ [new B · AB ⇐ b!(�)� a?(�� �)� a2?(�� �)� a3?(�) ; CA]�κA

BJ [DB | def AB ⇒ b?(�)� µX � req↑!(�)� (NA↑?()� κ†
B + rep↑?(�)�

join C� · BC ⇐ c!(�)� (dny?(�)� X + acc?(�)�
(ν�) a!(�� �)� c!(�))) ; κ†

A]�B
κB

where in A, CA corresponds to the compensating behavior of A in Fig. 6.10. By
expanding the definition of def and new, we have:

AJ [(ν�) (BJ [AB!(�) ; 0]∞∅ | �J [PA ; 0]∞∅) ; CA]�κA

| BJ [DB | AB?(�)� �J [PB ; 0]∞∅ ; κ†
A]�B

κB | C� | D

where PA� PB are abbreviations of the behaviors at patient and EC sides, respectively.
Let us focus on the interaction betwen A and B. First, we infer the following output
transition from A, using rules (O��), (L��L), (O���), (P���) and (T���L):

AJ [(ν�) (BJ [AB!(↓)� ; 0]∞∅ | �J [PA ; 0]∞∅) ; CA]�κA

(ν�) B AB!(�)
−−→

AJ [(ν�) (BJ [0 ; 0]∞∅ | �J [φ(PA) ; 0]∞∅) ; CA]�−1
κA

We can also infer an input transition from B, using rules (I�), (P���), and (L��L):

BJ [DB | AB?(�)� �J [PB ; 0]∞∅ ; κ†
P]�B

κB

B AB?(�)
−−→ BJ [φ(DB) | �J [PB ; 0]∞∅ ; κ†

P]�B−1
κB

Given these transitions, a synchronization can be inferred using rule (C�����), taking
� as shared name for A and B to communicate. When considering the system as a

170 Chapter 6. Dealing with Time and Exceptions

whole, this synchronization will affect the time signatures in agents C� and D; this
is formalizes using rule (P���). We then have:

(ν�) (AJ [BJ [0 ; 0]∞∅ | �J [φ(PA) ; 0]∞∅ ; CA]�−1
κA |

BJ [φ(DB) | �J [PB ; 0]∞∅ ; κ†
P]�B−1

κB) | φ(C�) | φ(D)

At this point, the default behavior of the system allows B to communicate locally
with DB and ask for a SW. After receiving NA↑!(�) from DB, the system evolves into:

(ν�) (AJ [BJ [0 ; 0]∞∅ | �J [φ3(PA) ; 0]∞∅ ; CA]�−3
κA

| BJ [φ3(DB) | �J [κ†
B ; 0]∞∅ ; κ†

P]�B−3
κB) | φ3(C�) | φ3(D) = S �

Here the abortion mechanisms come into play: by the emision of κ†
B it is possible

to switch to the compensating part of the conversation despite there is still some
time before reaching a timeout. Compensation signals will travel upwards among
conversations. Applying (A����), (F���T���L), (F���I��) and (P���), we obtain:

S � τ
−−→ (ν�) (AJ [BJ [0 ; 0]∞∅ | �J [φ4(PA) ; 0]∞∅ ; CA]�−4

κA

| BJ [φ3(DB) | �J [0 ; 0]∞∅ ; κ†
P]0κB) | φ4(C�) | φ4(D) = S ��

Finally, compensating signals can travel across conversation contexts in parallel.
After the execution of (A����), (����), (F���P���) and (P���), below we can see how
the exceptional behavior of B makes A search for an alternative solution (i.e.: restart
the request and increase the emergency level):

S �� τ
−−→ (ν�) (AJ [BJ [0 ; 0]∞∅ | �J [φ4(PA) ; 0]∞∅ ; CA]0κA

| BJ [φ4(DB) | �J [0 ; 0]∞∅ ; 0]0κB) | φ5(C�) | φ5(D)

6.6.5 Refining the Initial Model.

We now explore a very basic notion of simulation for comparing models featuring
timed and exceptional behavior. Roughly speaking, we say that a model (e.g., an
implementation) refines another model (e.g., a specification) if it passes the same
tests. One would expect the implementation to contain more behavior (for instance,
compensation activities and timeouts) than the specification, therefore we aim for
refinement to be a preorder (i.e.: a reflexive, transitive but not symmetric) relation.
The following definitions are specialized for our refinement setting, coming from
classical notions of simulation [Milner 1999] and testing [De Nicola & Hennessy 1984]:

Definition 6.6.2 (Refinement). Let � be a non-empty set of testing names. A binary
relation over testing processes � is a refinement up to � if P � Q implies:
(1) if P −→ P � then ∃Q��Q −→∗ Q� and P � � Q� and
(2) ∀� ∈ �, P �−−→ P � implies ∃Q��Q �⇒ Q� and P � � Q�.
We say that Q refines P up to � (written P �� Q) if there exists a refinement up to
� � such that P�Q.

6.6. Timed and Compensating Models. 171

Proposition 6.6.3 (Refinement is a preorder). Let � be a fixed set of testing names.
Then �� is a preorder on processes (i.e., a reflexive and transitive order relation).

Proof. It is immediate to see that relation {(P� P) | P is a testing process} is a
refinement up to �, thus � is reflexive. For transitivity, we have to show that
if �1� �2 are refinements up to �, then their composition, defined as �1�2 =
{(P� S) | ∃Q� P�1Q ∧ Q�2S}, is also a refinement up to �. We thus verify the
two conditions in Definition 6.6.2.

For the first condition, let (P� S) ∈ �1�2 and suppose P −−→ P �. We have to
exhibit a process S � such that S −−→∗ S � and P ��1�2S �. By definition of �1�2
there exists a Q s.t. P�1Q and Q�2S . Hence, if P −−→ P � then there exists a Q�

s.t. Q −−→∗ Q� and P ��1Q�. In turn, this ensures the existence of the desired S �, as
S −−→∗ S � and Q��2S �. Hence, P ��1�2S �.

The reasoning for the second condition is similar and holds because both �1, �2
are refinements up to the same set of testing names, �. Suppose P �−−→ P �. We
have to exhibit a process S � such that S �⇒ S � and P ��1�2S �. By definition of �1�2
there exists a Q s.t. P�1Q and Q�2S . Hence, if P �−−→ P � then there exists a Q� s.t.
Q �⇒ Q� and P ��1Q�. Since Q�2S , S can match all these actions, and the existence
of an S � such that S �⇒ S � and Q��2S � is ensured. Hence, P ��1�2S �.

We are now ready to establish the relation between the models introduced before.

Proposition 6.6.4. Let T , SF , ST , S be the processes defined above. Then we have:
T � SF , T � ST , and T � S , ST �� SF and SF �� ST .

Sketch. Following Def. 6.6.2, it is sufficient to show that there exist relations �1, �2,
and �3 which are simulation relations under ��(T) such that T �1 SF , T �2 ST , and
T �3 S . The last two cases can be proven by counterexamples.

We discuss the case of �3 below. Consider the relation of pairs of process states
between T and S 2, so �3 = {(T � S)� (T1� S1)� (T2� S2)� (T3� S5)� (T4� S6)� (T5� S7)�
(T6� S8), (T7� S15)� (T8� S16)� (T9� S17)� (T10� S19)� (T11� S18)� (T12� S20)} denoted by the
dotted lines in the following diagram:

T10 T11

T // T1 // T2 // T3 // T4 // T5 // T6 // T7 //

�� 99

T8 // T9

�� 99

��
%%
T12

S
**
S1

)) S2
)) S3

)) S4
)) S5

)) S6
))

jj S7
,, S8
�B=0

κ†
A)) S9

⌦⌦
S18 S17

��
kk

��tt

S16kk S15kk

��tt

S14kk S13kk S12kk S11kk S10kk

S20 S19

2Note that there is a set of possible process transitions for each instantiation of the time signature
� in a conversation �J [P ; Q]�κ .

172 Chapter 6. Dealing with Time and Exceptions

Above S�� T� represent the i-th transitions of processes S and T , arrows without
labels represent unobservable transitions from synchronizations between different
conversations, and �� denotes the execution of a test for process �. Similarly, κ†

represent the firing of a compensation signal κ . Intuitively, the diagram above de-
scribes how the simple tests and the complete specification are related to each other:
They behave equally up-to pair (T2� S2), where S include extra evolutions describing
its consultation on the social-workers database, meeting again in pair (T3� S5). The
simulation goes onwards until having reached the communication of social worker
credentials between B and A (pairs (T6� S8)), but timeout �B is reached and compen-
sation processes for A and B are fired. When reaching pair (T7� S15) we get back to
a consistent state, and S can perform the tests given in T .

6.7 Related Work

Although there is a long history of timed extensions for (mobile) process calculi (see,
e.g., [Berger & Honda 2000]) and the study of constructs for exceptional behavior has
received significant attention (see [Ferreira et al. 2010] for a recent overview), time
and its interplay with forms of exceptional behavior do not seem to have been jointly
studied in the context of models for structured communication. In our previous work
[López et al. 2010] we have studied an LTL interpretation of the session language
in [Honda et al. 1998] and proposed a extension of it with time, declarative informa-
tion, and a construct for session abortion. The language in [Honda et al. 1998] is
however limited for our purposes, as it does not support multiparty interactions. The
differences in expressiveness between C3 and a previous variant of the CC featuring
try-catch constructs [Vieira et al. 2008] have been already discussed in Section 6.4.

In the past, time and exceptional behavior have been considered only separately
in orchestrations and choreographies. With respect to time, Timed Orc [Wehrman
et al. 2008] introduced real-time observations for orchestrations by introducing a de-
lay operator. Timed COWS [Lapadula et al. 2007b] extends COWS (the Calculus for
Orchestration of Web Services [Lapadula et al. 2007a]) with operators of delimitation,
abortion, and delays for orchestrations; we are not aware of reasoning techniques for
Timed COWS. With respect to exceptional behavior, [Carbone et al. 2008, Capecchi
et al. 2010] propose languages for interactional exceptions, in which exceptions in a
protocol generate coordinated actions between all peers involved. Associated type
systems ensure communication safety and termination among protocols with normal
and compensating executions. In [Capecchi et al. 2010], the language is enriched
further with multiparty session and global escape primitives, allowing nested excep-
tions to occur at any point in an orchestration. As for choreographies, [Carbone 2008]
introduced an extension of a language of choreographies with try/catch blocks, guar-
anteeing that embedded compensating parts in a choreography are not arbitrarily
killed as a result of an abortion signal.

On a similar track, the work in [Hongli et al. 2007] presents a denotational se-
mantics based on traces for a simple language for choreographies with exception

6.8. Concluding Remarks 173

handling and finalization constructs, allowing a projection from exceptional behavior
of a choreography to its endpoints. The main differences from our approach are the
language constructs and the semantics for compensable behavior used: First, the lan-
guage for choreographies used assume that there is a principal taking the decisions
about which branches to execute, whereas the semantics of choice in C3 assume a
fully distributed system where any choice is equally possible. Second, the semantics
of the compensating blocks act pretty much like exceptions in sequential languages,
where exceptions are evaluations of expressions, and there is no treatment for nesting
contexts.

Our work has been influenced by extensions to the (asynchronous) π-calculus,
notably [Laneve & Zavattaro 2005, Berger & Honda 2000]. In particular, the role of the
time-elapsing behavior for conversation contexts used in C3 draws inspiration from the
behavior of long transactions in webπ , and from the π-calculus with timers in [Berger
& Honda 2000]. Notice that the nature of these languages and C3 is very different.
First, the communication model is different: C3 is synchronous, while the calculi in
[Laneve & Zavattaro 2005, Berger & Honda 2000] are asynchronous. Second, webπ
is a language tailored to study long-running transactions, and therefore exceptions
in webπ and compensations in C3 have a completely different meaning, even if both
constructs look similar.

6.8 Concluding Remarks

We have presented C3, a variant of the CC in which conversation contexts have
an explicit duration, a compensation activity, and can be explicitly aborted. We
have informally discussed the expressiveness and relevance of its two main features:
explicit abortion signals and timed behavior. We have illustrated these features in a
heathcare scenario of structured communications.

Ongoing Work. There are a number of directions which are worth pursuing based
on the developments presented here. The most pressing issue concerns analysis
techniques for C3 specifications. We would like to develop type disciplines for en-
suring communication correctness in models featuring time and exceptional behavior.
For this purpose, conversation types [Caires & Vieira 2010] and the linear/affine type
system proposed in [Berger & Yoshida 2007] might provide a reasonable starting
point. We are also interested in a notion of refinement between a model in CC and
an associated model in C3. In this chapter we report some preliminary ideas in this
direction: intuitively, the objective is to decree that a C3 model is a refinement of a
related CC model if they pass a set of tests present in both models; the challenge is
to obtain suitable characterizations for such tests, considering time and the execution
of compensating behavior.

A different research direction concerns obtaining formal separation results for
the expressiveness conjectures stated in Section 6.4. Different models for exception
handling induce different semantics for treating exceptional behavior; it would be

174 Chapter 6. Dealing with Time and Exceptions

interesting to understand their precise relation in terms of expressiveness. While
some previous work has addressed similar questions [Lanese et al. 2010], we think
it would be interesting to study such question in the context of concrete models for
structured communications, such as CC and C3.

Finally, we are interested in equipping C3 with behavioral equivalences, and
associated properties in the lines of that proposed for the CC. In particular, we
would like to obtain a set behavioral equations (such as those defined for the CC
in [Vieira et al. 2008, Prop. 4.3]) as a reasoning technique for C3. Such behavioural
equivalences have to take into account the different nature of compensations here
presented, and they are related to the work in communicating transactions [de Vries
et al. 2010], with the difference that C3 does not assume any coordination checkpoint.

Acknowledgements. This research has been supported by the Danish Research Agency
through the Trustworthy Pervasive Healthcare Services project (grant #2106-07-
0019, www.TrustCare.eu) and by the Portuguese Foundation for Science and Tech-
nology (FCT/MCTES) through the Carnegie Mellon Portugal Program, grant INTER-
FACES NGN-44 / 2009. We thank the anonymous reviewers for their useful comments.

Appendix 6.A Further Examples: Running the Buyer-Seller example

Let us illustrate the LTS of C3 by revisiting the extended purchase scenario discussed
in the introduction. We describe the evolution of the system where the buyer invokes
S�����1 with an expected response time of two time units. We recall the definition
of the complete system:

N��B����J [
�

�∈{1�2�3} new S������ · BuyService with (��� ��) ⇐ {P�; Q�}
| C������ ; C�����O����]����

�
| �

�∈{1�2�3} S������J [DB | def BuyService with (��� ��) ⇒ {offer?(����)�
askPrice↑!(����)� priceVal↑?(�)� price!(�)�
join S������ · DeliveryService ⇐ product↑!(����);

R�} ; C�����S����]��
��| S������J [def D�������S������ with (�� �) ⇒ {product?(�)� details!(����); T } ; 0]�3

�

where P�
def
= offer!(����)� price?(�)� comi↑!(�)� details?(�). By expanding the defini-

tion of def and new, we have:

N��B����J [(ν�) (S�����1J [BuyService!(�) ; 0]∞∅ | �J [P1 ; Q1]2�1) | S� | C������ ;
C�����O����]����

�

| S�����1J [DB | BuyService?(�)� �J [offer?(����)�(· · ·) ; R1]�1
�1 ; C�����S���1]�1

�1

| S� | S������

where S� abbreviates the definitions of S�����2 and S�����3 at the buyer side, and
S� is the analogous process at the shippers side. Focusing on N��B���� , we can

www.TrustCare.eu

6.A. Further Examples: Running the Buyer-Seller example 175

infer the following transition, using rules (O��), (R��), (L��L), and (P���):

N��B����J [(ν�) (S�����1J [BuyService!(�) ; 0]∞∅ | �J [P1 ; Q1]2�1) | S� ;
C�����O����]����

�
(ν�) S�����1 BuyService!(�)

−−→ N��B����J [S�����1J [0 ; 0]∞∅ | �J [P1 ; Q1]1�1 | φ(S�) ;
C�����O����]����

�

which decreases the time bound for conversation context � to 1. The behavior of
S�����1 is completely complementary to the above output, as inferred by using (I�),
(L��L), and (P���):

S�����1J [DB | BuyService?(�)� �J [offer!(����)�(· · ·) ; R1]�1
�1 ;

C�����S���1]�1
�1

S�����1 BuyService?(�)
−−→ S������J [DB | �J [offer?(����)�(· · ·) ; R1]�1

�1 ;
C�����S���1]�1−1

�1

Given these two transitions, a synchronization can be inferred using rules (C����L)
and (P���), using � as shared name for N��B���� and S�����1 to communicate.
The state of the system is then:

(ν�) (N��B����J [S�����1J [0 ; 0]∞∅ | �J [offer!(����)� (· · ·) ; Q1]1�1 | φ(S�) ;
C�����O����]����

�

| S�����1J [DB | �J [offer?(����)�(· · ·) ; R1]�1
�1 ; C�����S�]�1−1

�1) | φ(W)

where W represents the rest of the system. At this point, a communication on offer
between N��B���� and S�����1 becomes possible. Omitting process S�����1 J
[0 ; 0]∞∅ , at the buyer side we have:

(ν�) (N��B����J [�J [offer!(����)� price?(�)� (· · ·) ; Q1]1�1 | φ(S�) ;
C�����O����]����

�)
� offer!(����)

−−→ (ν�) (N��B����J [�J [price?(�)� (· · ·) ; Q1]0�1 | φ2(S�) ;
C�����O����]����

�)

while S�����1 makes an input transition located at �, inferred using (O��) and (L��L):

(ν�) (S�����1J [DB | �J [offer?(����)� askPrice↑!(����)� (· · ·) ; R1]�1
�1 ;

C�����S�]�1−1
�1) | φ(W)

� offer?(����)
−−→ (ν�) (S�����1J [DB | �J [askPrice↑!(����)� (· · ·) ; R1]�1−1

�1 ;
C�����S���1]�1−1

�1) | φ2(W)

Again, these complementary transitions can synchronize, thus firing an unobservable
transition inferred using rule (C���). The system then evolves to

(ν�) (N��B����J [�J [price?(�)� (· · ·) ; Q1]0�1 | φ2(S�) | ; C�����O����]����
�

| S�����1J [DB | �J [askPrice↑!(����)� (· · ·) ; R1]�1−1
�1 ; C�����S���1]�1−1

�1) | φ2(W)

176 Chapter 6. Dealing with Time and Exceptions

At this point, the default behavior of the system establishes that S�����1 contacts DB
in order to communicate the price of the selected product to N��B���� . However,
we notice that conversation context � inside N��B���� has reached a timeout. As
a consequence, the only possible way for progressing is by engaging into the com-
pensating behavior, represented by process Q1. Assuming Q1

λ
−−→ Q�

1, the evolution
of the compensating behavior can be inferred using rule (C���). We then have:

(ν�) (N��B����J [�J [price?(�)� (· · ·) ; Q�
1]0�1 | φ3(S�) ; C�����O����]����

�

S�����1J [DB | �J [askPrice↑!(����)� (· · ·) ; R1]�1−1
�1 ; C�����S���1]�1−1

�1)) | φ3(W) �

Appendix 6.B Proofs of Proposition 6.6.4

For �1, consider the relation of pairs of process states between T and SF denoted
by the dotted lines in Figure 6.11:

For �2, consider the relation of pairs of process states between T and ST denoted
by the dotted lines in Figure 6.123.

Finally, the counterexamples are built from the evolutions of SF and ST presented
in Figure 6.11 and Figure 6.12, respectively. For �4, the relation breaks when ST

reach state ST
8 , that enables conversation A to start its compensating part after

reaching a timeout. At this point of the evolution, the matching state at SF (SF
8)

cannot restart the process, and therefore will be blocked. Similar case happens
when constructing �5, as it is impossible to map the states derived from the explicit
compensation procedure generated by SF in state SF

2 ,

3In this example, we consider �B > �A .

6.B. Proofs of Proposition 6.6.4 177

T10 T11

T // T1 // T2 // T3 // T4 // T5 // T6 // T7 //

�� 99

T8 // T9

�� 99

��
%%
T12

SF
10 SF

11

SF **
SF

1
**
SF

2
**

κ†
A��

SF
3

**
SF

4
**

��
SF

5
**
SF

6
**
SF

7
**

�� 55

SF
8

**
SF

9

�� 55

��
))SF

13
��

SF
29

κ†
B��

SF
12

SF
14
��

SF
30

κ†
A��

SF
15
��

SF
31
��

SF
16
��

SF
32
��

SF
43

SF
17

⇥⇥ ⌧⌧
SF

33
++
SF

34
++
SF

35
++
SF

36
++
SF

37
++
SF

38

�� 55

⌧⌧

SF
18
✓✓

SF
26

κ†
B��

SF
39
��

SF
19
✓✓

SF
27

κ†
A��

SF
40

��yy ����
SF

20
��⇥⇥ ⌧⌧

SF
28 SF

41 SF
42

SF
21 SF

22
��

SF
23

��⇥⇥
��
⌧⌧

SF
24 SF

25

Figure 6.11: Relations between T and SF .

178 Chapter 6. Dealing with Time and Exceptions

T10 T11

T // T1 // T2 // T3 // T4 // T5 // T6 // T7 //

�� ::

T8 // T9

�� <<

��
""
T12

ST **
ST

1
**
ST

2
**
ST

3
**
ST

4
**
ST

5
**
ST

6
,, ST

7
�B=0

,, ST
8

�A=0
** ST

9

⌦⌦

ST
18 ST

17
��
kk

��ww

ST
16kk ST

15kk

��ww

ST
14kk ST

13kk ST
12kk ST

11kk ST
10kk

ST
19 ST

20

Figure 6.12: Relations between T and ST .

Chapter 7

Towards Refinement Relations in
Open Specifications

In Chapter ?? and Chapter 5 we discussed how declarative visions of communication-
centred programs can provide more flexibility to specifications. The connection be-
tween program specifications and a logical framework can provide such flexibility,
and allows for automated verification of program specifications with respect to a
logical formulae. In this chapter we explore how to introduce such flexibility di-
rectly in the specifications. In this chapter we present initial ideas towards Open
Specifications. An open specification has two components: a system description that
presents the sequence of activities that must be performed, and “open” activities:
tasks that a system may do and still conform to the specification. Here we present
short notes on two initial, independent ideas towards the definition of refinement
relations for open specifications. First, in Section 7.1 we propose a new denotational
behavioural model called open mixed trees which generalises standard model of la-
belled trees (where labels are marked as negative, positive or both) by annotating
each state with a set of so-called open actions and a flag indicating if termination is
allowed in the state or not. The definition of refinement is then a generalisation of
covariant-contravariant simulation that also takes account of termination and allows
intermediate open parts of the specification. Second, in Section 7.2 we explore tran-
sition systems with responses for the specification of open specifications. A transition
system with responses is a new generalisation of modal transition systems that al-
lows for natural of deadlock freedom and liveness for infinite computations. Here we
present a definition of refinement that fits transition systems with responses.

Contents
7.1 Refinement for Open Mixed Trees . 180

7.1.1 Open Mixed Trees and Refinement 182
7.2 Refinement for Transition Systems with Responses 184

7.2.1 Transition Systems with Responses and Refinement 185
7.3 Discussion and Future Work . 186

0This chapter collects the ideas presented in [Carbone et al. 2011, Carbone et al. 2012]

180 Chapter 7. Towards Refinement Relations in Open Specifications

7.1 Refinement for Open Mixed Trees

Motivation The most common way of specifying concurrent systems is to take a
set of communicating processes, and establish their interactions using input-output
primitives. Think for a second on healthcare workflow process in which you have a
patient Alice, a doctor Bob, and a Social Worker Charlie. The workflow describes the
case were a patient feels dizzy and comes to the doctor to get diagnosed, prescribed
and controlled along his illness. The following set of activities are included in the
first specification S:

1. Alice comes to Bob for a medical appointment.

2. Bob receives Alice and gathers her symptomatology.

3. After consultation, Bob formulates a medicine treatment for Alice.

4. Bob sends the medicine formulation to Charlie, so he can deliver it to Alice.

5. Alice gets the medicine from Charlie and starts taking her treatment regularly
as specified by Bob.

6. After some days, Alice comes back to Bob for a control, and the symptoms have
disapeared.

Many details have been hindered from this example. First of all, it only details the
interaction between three of the main actors involved. We may have a private health
care institution that has to fulfill the auditing processes, where between activity 2
and 3. other actors will come into play. Our specification S could be extended
accordingly to a new model S � including the two actions:

1. Alice comes to Bob for a medical appointment.

2. Bob receives Alice and gathers her symptomatology.

3. • On insuficiency of information, Bob will take blood samples and supple-
mentary tests from Alice.

• On cases with high variability, Bob will consult a pool of specialists on
Alice’s case.

4. Bob sends the medicine formulation to Charlie, so he can deliver it to Alice.

5. Alice gets the medicine from Charlie and starts taking her treatment regularly
as specified by Bob.

6. After some days, Alice comes back to Bob for a control. and the symptoms have
dissapeared.

7.1. Refinement for Open Mixed Trees 181

It is to note, that even when S � has more behavior than S , it is still constrained to
a set of activities that can be performed. The extra set of activities can be repeated
many times and with different execution orders, but activities outside this set have to
be ruled out. For instance, Bob cannot start operating Alice just after having gathered
her symptomatology.

How is S related to S �? It is clear that the notion that we are looking for
has a lot to do with the notion of refinement. Basically, refinement tells us that a
specification S and an implementation S � are related if the set of behaviors in S
is a subset of the set of behaviors exhibited by S �. There have been a myriad of
papers during more than thirty years exploring different notions of partial transition
systems and refinements capturing the relationship between abstract and concrete
specifications, with views coming from branches as diverse as simulation and testing
relations, modal transition systems, and abstract interpretation [Cousot & Cousot 1977,
Larsen et al. 2007, Antonik et al. 2008a], and often applied to specific realms, like
control theory [Baeten et al. 2010] and communication-centred programming [Bravetti
& Zavattaro 2007].

In many cases we will specify systems by adding up more and more roles (and
their respective behaviors) over the time. This, will lead us to start with a specification
like S , knowing that each of the actions can be further refined with more and more
behavior. We propose a new controlled way, called open refinement, to specify where
and which actions can be inserted. The idea is in addition to standard transitions
P

�
−−→ P � where a process P exhibits an immediate action � before evolving into

P � to also specify open states PA 88
�

−−→ P �, where the process P can exhibit a
finite series of actions in A before evolving with � into P �. The open state allows us
to describe explicit stages in a process in which a process can be refined with any of
the actions in a constrained set A. Here, transitions become weaker, as they might
need more than one step for moving from P to P �, but they also become broader than
the standard weak transitions, as the set A can involve several (and possibly visible)
actions and not just a dedicated internal action.

These changes lead us to proposing a new notion of refinement we call open
mixed refinement. Starting from the covariant-contravariant simulations (that allow
mixed, externally and internally controlled, activities and captures the necessary
difference between such) we add the new notion of open states and also the ability to
specify explicitly if a system may terminate in a state from which additional internally
controlled activities are possible.

We believe the proposed model has both good uses in practice and good prop-
erties, i.e. can be given a clean categorical representation. We start in this brief
abstract by giving the definition and the first result that open mixed refinement spe-
cializes to covariant-contravariant simulation if one allows no open states and always
allows termination.

182 Chapter 7. Towards Refinement Relations in Open Specifications

7.1.1 Open Mixed Trees and Refinement

Definition 7.1.1 (Open Mixed Trees). An open mixed tree is a tuple

T = �S� �0� Act−� Act+� σ � →�

where

• S is a set of states,

• �0 ∈ S is the initial state,

• Act = Act− ∪ Act+ is a set of actions characterized as externally controlled ac-
tions in Act− (denoted by �−) and internally controlled actions in Act+ (denoted
by �+).

• →⊆ S × Act × S is a labelled transition relation between states

• σ : S → �(Act∪{X}) defines for each state the open actions and the possibility
of terminating

• X �∈ σ (�) =⇒ ∃�
�+

−−→, i.e. an internally controlled action must be possible
from every non-terminating state

• ∀� ∈ S� there exists a unique path S0 −−→∗ � (i.e. the transition relation forms
a tree)

An open mixed tree where σ (�) = {X} for all � ∈ S , i.e. an open mixed tree with
no open actions and which allow termination in every state, is referred to as just a
mixed tree. A mixed tree is equivalent to a normal tree labelled with positive and
negative labels.

Intuitively, an open mixed tree represents the specification of a reactive, non-
deterministic system with both internally controlled actions (e.g. output) and exter-
nally controlled actions (e.g. input). Note that there may be actions in Act− ∩ Act+
that are both externally and internally controlled.

In any state with at least one internally controlled action any implementation
must be able to do at least one of the internally controlled actions, or terminate if
termination is also allowed by the specification. The states in which it is allowed to
terminate is defined by the set T . Note that in order to not have any contradictions a
state which is not in T (i.e. termination without further internally controlled actions
is not allowed) must have at least one internally controlled action out of it.

Finally, the function σ pairs each state with a set of open (or underspecified)
behavior, which allows an implementation to perform any action within the set a
finite number of times before progressing (or terminating if the state is in T . We can
depict open trees easily:

7.1. Refinement for Open Mixed Trees 183

◦

{�−��+}
��

�+

⌃⌃

�+

��
�+

✏✏

�−

⌘⌘

�−

⇠⇠
◦ ◦ ◦ ◦ ◦

Below we write �1
��

−−→ �2 when {�1� �� �2} ∈→ and � ∈ Act�. Similarly, we
write σ+(�1) for the set of transitions such that �1

�+

−−→ ��
1 ∈ σ

Definition 7.1.2 (Refinement of Open Mixed Trees). A binary relation � ⊆ S1 × S2
between the state sets of two open mixed trees P� = �S� � �� � Act−� Act+� σ� � →�� for
� ∈ {1� 2} is a refinement if �1��2 and �1��2 implies

1. ∀�1
�−

−−→1 ��
1, implies ∃�2

�1−−→2 �2�1
�2−−→2 · · ·

��−−→2 �2��
�−

−−→2 ��
2��+1,

�� ∈ σ1(�1), and �1��2��

2. ∀�2
�+

−−→2 ��
2 implies (i) ∃�1

�+

−−→1 ��
1, and ��

1���
2 or (ii) � ∈ σ+

1 (�1) and �1���
2

3. σ2(�2) ⊆ σ1(�1),

4. X ∈ σ (�1) =⇒ �2
�1−−→2 �2�1

�2−−→2 · · ·
��−−→2 �2�� and �� ∈ σ1(�1), �1��2��

and X ∈ σ�(�2��).

5. if �2 = �2�0
�0−−→2 �2�1

�1−−→2 �2�2
�2−−→ · · · , �1 = �1�0 and (�1��

��−−→ �1��+1 or
(�1�� = �1�1+1 and �� ∈ σ1(�1��)) and �1����2�� for � ∈ ω, then |{�1��}�∈ω| = ω.

We say that Q is a refinement of P , written P � Q, whenever there exists a relation
� such that P�Q.

Proposition 7.1.3. The refinement relation � between open mixed trees as defined
above

1. is reflexive and transitive, and

2. contains the identity relation

As stated in the proposition below, refinement specializes for mixed trees (i.e. open
mixed trees with no open actions and which allow termination in every state) to the
notion of covariant-contravariant simulation defined in [Fábregas et al. 2010, Aceto
et al. 2011].

Definition 7.1.4 (covariant-contravariant simulation [Fábregas et al. 2010]). Given
P = (P� B� →P) and Q = (Q� B� →Q), two LTS for the alphabet B, and {B�� B�� B��}
a partition of this alphabet. A (B�� B�)−simulation (or just a covariant-contravariant
simulation) between them is a relation S ⊆ P × Q such that for every �S� we have
that:

184 Chapter 7. Towards Refinement Relations in Open Specifications

• for all � ∈ B� ∪ B�� and all �
�

−−→ �� there exists �
�

−−→ �� with ��S��.

• for all � ∈ B� ∪ B�� and all �
�

−−→ �� there exists �
�

−−→ �� with ��S��.

Proposition 7.1.5. Refinement for open mixed trees coincides with covariant-contravariant
simulations, taking B� = Act+\Act−, B� = Act−\Act+ and, B�� = Act− ∩ Act−.

7.2 Refinement for Transition Systems with Responses

Motivation Modal transition systems (MTS) were introduced originally in the semi-
nal work of Larsen and Thomsen [Larsen & Thomsen 1988] (see also [Antonik et al. 2008b])
as a basic transition system model supporting stepwise specification and refinement
of parallel processes. A MTS can be regarded as a labeled transition system (LTS)
in which a subset of the transitions are identified as being required (must), while
the others are allowed (may). In a MTS every required transition is also allowed, to
avoid inconsistencies. A MTS describes simultaneously an over-approximation and
an under-approximation of a process in an intertwined manner. In a stepwise refine-
ment scenario this approximation interval is narrowed down to a single process, an
LTS.

Subsequent work has lifted the assumption that required transitions need also
be allowed, leading to the model of mixed transition systems [Dams 1996]. This
means, that mixed transition systems allow states to have requirements that are not
possible to fulfill, which we will refer to as conflicting requirements. However, the
notion of a must transition that is not also a may transition appears quite intricate;
it calls for interpreting the specifications at the targets of the must transitions which
must all be satisfied in conjunction with some choice of may transition. We propose
to take a step back and sketch a generalization of MTSs with a restricted kind of
must transitions that allow for a simpler semantics. We simplify the exposition by
restricting our attention to action-deterministic transition systems, where for each
action � there is at most one �-transition from each state. We propose to replace the
must transitions by a set of must actions assigned to every state. For readers familiar
with mixed transition systems, this resembles a must transition to a “top” state from
which every action is possible as a may transition. We refer to this set of actions
as the response (or must) set, and we name the resulting model Transition Systems
with Responses (TSR). We believe the mixed transition systems represented by TSRs
are much simpler to understand and work with, and yet they still capture a rich set
of specifications. Indeed, TRSs arise as the natural transition system underlying
Dynamic Condition Response (DCR) Graphs (e.g. [Hildebrandt & Mukkamala 2010,
Hildebrandt et al. 2011]), which generalize event structures to allow finite, executable
specifications of ω-regular languages and are particularly useful for specification
of flexible workflows where many actions are optional and liveness properties are
needed.

Consider the example of Figure 7.1, illustrating two parts of a medical workflow
described as TSRs. The TSR given in Figure 7.1(a) shows that the doctor may

7.2. Refinement for Transition Systems with Responses 185

(a) Medication, doctor (b) Medication, nurse

Figure 7.1: Medication workflow as two interacting transition systems with responses

first order any number of tests and then prescribe some medicine. Having prescribed
medicine, it becomes a requirement to sign the prescription, so the response set of
state �1 now contains the action sign. The TSR for a nurse given in Figure 7.1(b)
may be interpreted similarly: If the nurse receives a prescription then the TSR moves
to state �1 in which give is included in the response set, meaning that the medication
must be given. However, this requirement cannot be satisfied in the present state,
since there is no outgoing transition labelled with give. This reflects the rule in the
workflow that the nurse is not allowed to give medicine before the prescription is
signed. If a signature is received, then the nurse still has the requirement to do a
give transition, and so can finally perform it and return to the initial state. However,
the nurse can also choose to do a don’t trust action, which signals to the doctor that
signing must occur again. In the doctor’s TSR the ?don’t trust action takes control
back to the state where sign is required as response.

7.2.1 Transition Systems with Responses and Refinement

Definition 7.2.1 (Mixed Transition Systems). A Mixed Transition System is a tuple
T = �S� �0� Act� →⇤� →♦� where S is a set of states, �0 ∈ S is the initial state, Act is
a set of actions, and →⇤� →♦⊆ S ×Act×S are respectively must and may transition
relations. T is also a Modal Transition System (MTS) if additionally →⇤ ⊆ →♦.

Definition 7.2.2 (Transition Systems with Responses). A Transition System with
Responses (TSR) is a tuple T = �S� �0� Act�⇤� →� where S , �0, Act are like above
and →⊆ S × Act × S is a transition relation, ⇤ : S → �(Act) defines for each state
the response actions that must be executed. Let ♦(�) =��� {� | ∃����

�
−−→ ��}, i.e.,

the actions on transitions that may be taken from �. We refer to a finite or infinite
sequence of transitions starting at the inital state as a run. A run is accepting if
for any intermediate state � in the run, � ∈ ⇤(�) implies eventually after that state
there will be a transition in the run labelled with the action � or a state �� where
� �∈ ⇤(��).

Proposition 7.2.3. Action-deterministic modal transition systems correspond to the
subset of TSRs where for all states � it holds that ⇤(�) ⊆ ♦(�). TSRs correspond

186 Chapter 7. Towards Refinement Relations in Open Specifications

to the subset of mixed transition systems of the form �S � {�}� �0 ∈ S� Act� →⇤⊆
S × Act × {�}� →♦=→ ∪{�} × Act × {�}�, where →⊆ S × Act × S .

An action-deterministic MTS M = �S� �0� Act� →⇤� →♦� can be represented as the
TSR R (M) = �S� �0� Act�⇤� →♦� where ⇤(�) =��� {� | ∃�� ∈ S��

�
−−→ ��} and a

TSR T = �S� �0� Act�⇤� →� as the action-deterministic MTS M(T) = �S� �0� Act� →⇤
� →♦�, where →⇤= {(�� �� ��) | � ∈ ⇤(�) ∧ �

�
−−→ ��} and →♦=→. A TSR

T = �S� �0� Act�⇤� →� corresponds to a mixed transition system M��(T) = �S �
{�}� �0� Act� →⇤� →♦� where →⇤= {(�� �� �) | � ∈ ⇤(�)} and →♦=→ ∪{�}×Act×{�}.

Definition 7.2.4 (Deadlock and Liveness). A deadlock state in a TSR T = �S� �0� Act�⇤� →
� is a state with a non-empty must set, and no outgoing transitions, i.e., a state in
which some actions are required but no further transitions are possible. Formally
we define a predicate deadlock on S by deadlock (�) ≡ ⇤(�) �= ∅ ∧ ♦(�) = ∅. A TSR
is deadlock free if it has no reachable deadlock state. A live state is one from which
there exists an accepting run. A TSR is live if all reachable states are live.

Definition 7.2.5 (Refinement of TSRs). A binary relation � ⊆ S1 × S2 between
the state sets of two transition systems with responses T� = �S� � �� � Act�⇤� � →�� for
� ∈ {1� 2} is a refinement if �1��2 and �1��2 implies

1. ∀�1
�

−−→1 ��
1 and � ∈ ⇤1(�1) implies ∃�2

�
−−→2 ��

2, � ∈ ⇤2(�2) and ��
1���

2,

2. ∀�2
�

−−→2 ��
2 implies ∃�1

�
−−→1 ��

1 and ��
1���

2

The refinement � is safe if it reflects deadlock states, so deadlock (�2) =⇒ deadlock (�1)
whenever �1��2.

Proposition 7.2.6. Given two TSRs T� = �S�� ���0� Act�⇤�� →�� for � ∈ {1� 2}, if � ⊆
S1 × S2 is a safe refinement then T2 is deadlock free if T1 is deadlock free.

An example of a safe refinement of the TSR in Figure 7.1(a) is the TSR obtained by
removing order test transitions. Since the first prescribe is not in ⇤, another example
is a TSR with just the initial state.

An example of a non-safe refinement of the TSR in Figure 7.1(b) is the TSR ob-
tained by removing transition labelled with ?sign. However, note that this action
belongs to the interface of the TRS, i.e., it is controlled by the environment. This
suggests as a next step studying a variant of refinement for TSRs where the inter-
face actions are preserved akin to partial bisimulation [Rutten 2000] or alternating
simulation [Alfaro & Henzinger 2001].

7.3 Discussion and Future Work

In the previous sections we have presented two generalisations of transition systems
with certain degree of flexibility when describing specifications, as well as refinement
as a way of relating different specifications with different degrees of information.

7.3. Discussion and Future Work 187

They emerged from the simple motivation of having denotational models that allow
for descriptions of systems that capture precisely the behaviour of a system but
still allows certain degree of flexibility by including actions that may appear in
implementations of the system. The first approach introduced open mixed trees as a
generalisation of labelled trees that capture internal and external choices, termination
and a set of open states. A refinement relation for open mixed trees then captures
cases where an implementation accomplish all the actions involved in the standard
specification, but can as well include optional actions left underspecified in open sets.
The second approach introduced Transition Systems with Responses (TSRs) as a new
generalisation of Modal Transition Systems which represents a restricted class of
mixed transition systems that are much simpler than general mixed transition systems,
and yet which remain expressive and allow natural definitions of deadlock freedom
and liveness for infinite computations. We have proposed a notion of refinement,
exemplified by a medical workflow consisting of two interacting TSRs.

As a future work, we aim at a unified framework were characterisations of re-
finement relations over transition systems with different characteristics (mixed be-
haviours, deadlock freedom, termination) can be studied. In particular, we believe
that a category- theory view of concurrent processes can be suitable for the study
of specifications with mixed behaviours, and in particular the evolution of concurrent
systems with partial information. In a categorical framework, one could study spec-
ification models isolating each of their features alone, and show how the features
can be combined, in the same style it has been done for functional simulation and
bisimulation relations in [Joyal et al. 1993, Fiore et al. 1999, Winskel 2005].

With respect to the study of transition systems with responses, we aim at a
further study of deadlock and liveness properties, as well as the detail of refinement
and bisimulation for TSRs, and the relation to other models with liveness, such as
DCR Graphs in [Hildebrandt & Mukkamala 2010, Hildebrandt et al. 2011] and Harel’s
Live Sequence Charts (LSCs) [Damm & Harel 2001]. This will include lifting the
restriction to action-deterministic systems, which can be done by considering TSRs
with transitions carrying labelled events (as in asynchronous transition systems and
labelled event structures) and response sets being sets of events, not actions.

Chapter 8

Final words

8.1 Conclusions

Communication-centred programming is becoming a central matter of research today,
at a time where the design of complex computation systems becomes more and more
a task of defining communication and coordination protocols among entities. The
fact that architectures for such entities face a high level of decentralisation makes
the description of such protocols quite difficult in practice, and requires protocol de-
signers to work at different levels abstraction that need to be interrelated. In this
thesis we explored two of them: Descriptions featuring a global view of interactions
between participants (choreographies) and descriptions featuring local views on how
each participant reacts with respect to an environment (orchestrations). Along the
previous 8 chapters we have explored programming languages techniques for chore-
ographies and orchestrations, with the ultimate goal of integrating imperative de-
scriptions of communication-centred programs with their declarative counterparts in
terms of logical descriptions. We found out that although both imperative and declar-
ative approaches for specifying communication-centred programs are quite mature,
little has been done towards establishing the relation between them. The aspects
taken into consideration during the writing of this document have been diverse, and
topics here exposed range between (variants) of process calculi for communicating
processes, logical characterisations of message-passing concurrency, type systems,
behavioural (refinement) relations between processes, and timing specifications. The
results in this thesis can be summarised below:

Logical Characterisations of Communication-Centred Programming Starting from im-
perative and declarative ways of specifying communication-centred programs, we es-
tablished connections between them by means of logical characterisations of chore-
ographies and orchestrations. With respect to choreographies: we introduced a
modal logic that allows for flexible descriptions of interactions in a global setting.
With respect to orchestrations, we explored the connections of the specifications of
services with respect to modal and linear temporal logics. These connections allow
for checking the conformance of an already running specification (the imperative
view) against a logical formula describing the minimal set of constraints required
in such scenario (the declarative view). Moreover, a mapping from logics for chore-
ographies to logics for orchestrations is provided, in a way that one can project the
formula characterising the good behaviour of a global specification, and check the
conformance of their associated end-points.

190 Chapter 8. Final words

Behavioural Types for Communication and Security One of the main interests of this
thesis is to provide for mechanisms where communications can evidence certain prop-
erties regarding the correctness of their interactions. Apart from logics, we explore
type systems to ensure such properties. First, we build upon languages for session
types to guarantee that protocol descriptions conform to a certain control flow, and
that allows for mappings between global and local views. The connection between
session typed calculi and the logical characterisations here presented allow one to
describe meaningful mappings: that is, global specifications that respect a certain
explicit behaviour (global type) and correspond to a logical formula, map correctly
to meaningful descriptions of orchestrations (end-point projections) and correspond
to the logical projection of global formulae. A second type system here explored
describes particular aspects of communications in concurrent constraint languages:
Here we show that a typing discipline restricting the use of variables in a speci-
fication of a system allows for guarantees about the good behaviour of a system,
describing appropriately communication and security protocols. This is (we believe)
the first work on behavioural type systems for a language of concurrent constraints,
and opens the landscape for the description of more complex typing scenarios.

Timing and Exceptional Behaviour in Structured Communications We started ex-
plorations on concepts like compensating behaviours and timed specifications of
communication-centred programs. The study of temporal and exceptional behaviour
was performed by adding minimal extensions to languages of communication-centred
programming with primitives that allow distribution of time and compensating be-
haviour. From such studies we found that both exceptional and timing behaviour need
to be consider together, and not in isolation when describing models of interactions.
Moreover, the description of interactions with multiple levels of nesting (something
particularly useful in service oriented architectures) greatly complicates the seman-
tics of the compensation behaviour, and requires a more flexible treatment than the
one used to control exceptions in imperative languages.

We hope this work evidences the connections between declarative and imper-
ative styles in the description of communication protocols, and works as an initial
contribution where research in this important area can be built upon.

8.2 Current and Future work

In this dissertation we have already pointed towards different directions for future
work. In this section we conclude by providing some comments on which directions
we believe are particularly interesting. Some of them are the object of current work.

Model Checking Communication-Centred Programs Along this whole thesis we have
advocated for connections between specifications and logics when describing commu-
nication protocols. The most natural idea expanding from this work is the development
of automated reasoning tools that allow one to mechanise the satisfiability checking

8.2. Current and Future work 191

of formulae in specifications of communication-centred programs. In order to provide
such tools both theory and practice have to be advanced. As we presented in Chap-
ter ?? with �� , we face undecidability issues when trying to verify programming
languages for communication-centred programs that feature recursion and restric-
tion operators. It is necessary to restrict our models to a subset of the language,
or to develop reasonable approximations regarding the models to avoid state space
explosion problems. One strand of work will be to complement the results presented
in Chapter ?? and Chapter 5 with model checking tools that allow us to verify the
satisfaction of logics for communication-centred programs in an automated way.

More on Type Disciplines Type systems provide mechanisms to restrict the behaviour
of programming languages in such a way that well-typed programs exhibit guarantees
about the good behaviour of systems specified. Three directions regarding the use
of type disciplines come out as inspiration of this work.

First, the results in Chapter 4 presented a first approach towards behavioural
types for a language of concurrent constraints. One might expect that the use of
Concurrent Constraint Programming languages for communication-centred program-
ming require the adaptation of session types such that communications in CCP follow
a certain order previously established in the communication protocol. The adaptation
of session types to CCP is by no means straightforward, and one need to take into
consideration that CCP is a general model of concurrency, that is specialised with
constraint languages depending on their application. One might expect session types
in such setting will emerge a specialisation’s of a general class of type systems, on
the same lines as general type systems for Bigraphs [Elsborg et al. 2009] and the Ψ
Calculus [Hüttel 2011].

Second, the results involving time analysis in communication-centred programs
presented in Chapter 6 opens an important question regarding the application of
current type disciplines when involving timed specifications. The work in [Berger &
Yoshida 2007] proposes typing analysis techniques for a variant of the asynchronous
π-calculus with locations and time windows. A linear/affine type discipline presents
a way to integrate time and linearity conditions in the analysis of interactions: by
typing timed processes, one is able to provide further guarantees about the live-
ness conditions of the systems under consideration, A further step derived from this
research involves the integration of a theory of timed types for global descriptions
involving idealised, global time, accessible for all participating nodes in the proto-
col, that further can be projected to infrastructures where synchronisation of real,
physical clocks is taken into consideration.

Third, we aim at exploring further connections between logics and behavioural
types. We are particularly interested in the application of refinement types for de-
scription of communication-centred programs. Refinement Types are dependent types
that embed first-order logic formulae [Gordon & Fournet 2009]. This framework pro-
vides a uniform setting to increase the expressive power of type systems by defining
subsets of types through logical separation. Its recent introduction opens interesting

192 Chapter 8. Final words

perspectives for the application of refinement types to session and security types,
allowing one to express properties of protocols that go beyond the control flow be-
haviour of messages exchanged in a protocol.

Open Specifications, and General Visions of Refinement The development of a logical
vision for communication-centred programs have left us with questions about the cor-
rect set of operators that we want to have in the logic. In this document we explored
derivations of Hennessy-Milner Logics, where the main properties of interest involved
action and may formulae both at the level of choreographies and end-points. The
may operator tells us important information about the existence of an evolution where
a property is fulfilled, but sometimes it can fall short by allowing other evolutions of
the system that do not comply with the property. In [Carbone et al. 2011] we started
studies on stronger versions of the may modality, where one is allowed to express
that a property is fulfilled in all possible executions in an eventual state, and their
implementation as part of the operators in �� is foreseen. Other improvements to the
logics proposed include the use of fixed points, essential for describing state-changing
loops, and auxiliary axioms describing structural properties of a choreography.

As future work, we aim at a unified framework where characterisations of re-
finement relations over transition systems with different characteristics (mixed be-
haviours, deadlock freedom, termination) can be studied. In particular, we believe that
a categorical view of concurrent processes can be suitable for the study of specifi-
cations with mixed behaviours, and in particular the evolution of concurrent systems
with partial information. In a categorical framework, one could study specification
models isolating each of their features alone, and show how the features can be com-
bined, in the same style it has been done for functional simulation and bisimulation
relations in [Joyal et al. 1993, Fiore et al. 1999, Winskel 2005].

Nominal Concurrent Constraint Programming One of the long-withstanding goals in
the research of CCP languages has been the correct representation of mobile be-
haviour over concurrent constraint programs. When referring to mobile behaviour we
can consider either link mobility, the ability of the network to reconfigure the con-
nections between nodes, or process mobility, the ability to reconfigure the topology
of the network. Link mobility has been modelled in utcc [Olarte & Valencia 2008a]. In
the classical setting, CCP-like calculi have modelled the logical view of a restriction
operator as an existential quantifier over a constraint store. By this formulation one
can say that a variable � is private from the constraint store c as no other process
can know the contents of � in ∃� c, except the one that imposed the constraint. In
[Palamidessi et al. 2006] it has been noticed that such a logical characterisation of
name restriction using the existential quantifier does not ensure uniqueness in the
fragment of the π-calculus with mismatch: given ∃� ∃� c(x� y) we cannot say that �
is different than �, therefore the freshness of name generation cannot be guaranteed
(as previously discussed in Chapter 4).

Given the importance of freshness and uniqueness conditions when dealing with

8.2. Current and Future work 193

sessions, we aim for a reformulation of the name hiding on cc-calculi using a different
conception. For doing so, we started working in a new variant of ccp-calculi, called
Fresh CCP, to deal with name generation. In fresh CCP, fresh name generation is
achieved by a redefinition of the underlying constraint system and the denotational
model of CCP with the use of nominal logic [Pitts 2003], an extension of first order
logic with bundled notions of name swapping and fresh terms.

Bibliography

[Abadi & Fournet 2001] Martín Abadi and Cédric Fournet. Mobile values, new names,
and secure communication. In POPL ’01: Proceedings of the 28th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
104–115, New York, NY, USA, 2001. ACM Press. (Cited on page 99.)

[Abadi & Gordon 1999] Martín Abadi and Andrew D. Gordon. A Calculus for Crypto-
graphic Protocols: The SPi Calculus. Inf. Comput., vol. 148, no. 1, pages 1–70,
1999. (Cited on pages 80 and 98.)

[Aceto et al. 2011] L. Aceto, I. Fábregas, D. de Frutos Escrig, A. Ingólfsdóttir and
M. Palomino. Relating modal refinements, covariant-contravariant simulations
and partial bisimulations. Fundamentals of Software Engineering, FSEN, 2011.
(Cited on page 183.)

[Alfaro & Henzinger 2001] Luca de Alfaro and Thomas A. Henzinger. Interface Au-
tomata. In Proceedings of the Ninth Annual Symposium on Foundations of
Software Engineering (FSE), pages 109–120, Vienna, Austria, September 2001.
ACM Press. (Cited on page 186.)

[Andrews et al. 2003] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatteet al. Business process execution
language for web services, version 1.1. Standards proposal by BEA Systems,
International Business Machines Corporation, and Microsoft Corporation, 2003.
(Cited on pages 14 and 20.)

[Antonik et al. 2008a] A. Antonik, M. Huth, K.G. Larsen, U. Nyman and A. Wasowski. 20
years of modal and mixed specifications. European Association for Theoretical
Computer Science. Bulletin, vol. 2, no. 95, 2008. (Cited on page 181.)

[Antonik et al. 2008b] Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman and
Andrzej Wąsowski. 20 Years of Modal and Mixed Specifications. Bulletin of
EATCS, vol. 95, June 2008. Available at http://processalgebra.blogspot.
com/2008/05/concurrency-column-for-beatcs-june-2008.html. (Cited on
page 184.)

[Baeten et al. 2010] J.C.M. Baeten, D.A. van Beek, S.P. Luttik, J. Markovski and J.E.
Rooda. Partial Bisimulation. SE Report 2010-04, Eindhoven University of Tech-
nology, Systems Engineering Group, Department of Mechanical Engineering,
Eindhoven, The Netherlands, 2010. (Cited on page 181.)

[Bartoletti & Zunino 2010] Massimo Bartoletti and Roberto Zunino. A Calculus of
Contracting Processes. In LICS, pages 332–341. IEEE Computer Society, 2010.
(Cited on page 20.)

http://processalgebra.blogspot.com/2008/05/concurrency-column-for-beatcs-june-2008.html
http://processalgebra.blogspot.com/2008/05/concurrency-column-for-beatcs-june-2008.html

196 Bibliography

[Bell & LaPadula 1973] D.E. Bell and L.J. LaPadula. Secure computer systems: Math-
ematical foundations and model. The MITRE Corporation Bedford MA Technical
Report M74244 May, vol. 1, no. M74-244, 1973. (Cited on page 93.)

[Berger & Honda 2000] Martin Berger and Kohei Honda. The Two-Phase Commit-
ment Protocol in an Extended pi-Calculus. Electr. Notes Theor. Comput. Sci.,
vol. 39, no. 1, 2000. (Cited on pages 15, 152, 172 and 173.)

[Berger & Yoshida 2007] Martin Berger and Nobuko Yoshida. Timed, Distributed,
Probabilistic, Typed Processes. In Proc. APLAS, volume 4807 of LNCS, pages
158–174. Springer, 2007. (Cited on pages 19, 173 and 191.)

[Berger et al. 2001] Martin Berger, Kohei Honda and Nobuko Yoshida. Sequentiality
and the Pi-Calculus. In S. Abramsky, editor, TLCA 2001, volume 2044 of Lecture
Notes in Computer Science, pages 29–45. Springer, Berlin Heidelberg, 2001.
(Cited on page 68.)

[Berger et al. 2008] Martin Berger, Kohei Honda and Nobuko Yoshida. Completeness
and Logical Full Abstraction in Modal Logics for Typed Mobile Processes. In
Luca Aceto, editor, ICALP’08, number 5126 of LNCS, pages 99–111. Springer-
Verlag, Berlin Germany, 2008. (Cited on pages 18, 19, 68, 114, 143 and 144.)

[Biba 1977] KJ Biba. Integrity considerations for secure computer systems. USAF
Electronic System Division, Hanscom Air Force Base. Technical report, Tech.
Rep.: ESD-TR-76-372, 1977. (Cited on page 93.)

[Blanchet 2001] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based
on Prolog Rules. In 14th IEEE Computer Security Foundations Workshop
(CSFW-14), pages 82–96, Cape Breton, Nova Scotia, Canada, June 2001. IEEE
Computer Society, Los Alamitos (2001). (Cited on pages 80 and 99.)

[Bocchi et al. 2010] Laura Bocchi, Kohei Honda, Emilio Tuosto and Nobuko Yoshida.
A theory of design-by-contract for distributed multiparty interactions. In CON-
CUR’10: Proceedings of the 21st International Conference on Concurrency The-
ory, Lecture Notes in Computer Science. Springer - Verlag, August 2010. (Cited
on pages 18 and 143.)

[Bonelli et al. 2005] E. Bonelli, A. Compagnoni and E. Gunter. Correspondence as-
sertions for process synchronization in concurrent communications. Journal of
Functional Programming, vol. 15, no. 2, pages 219–247, 2005. (Cited on pages 18
and 143.)

[Boreale et al. 2006] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti,
F. Martins, U. Montanari, A. Ravara and D. Sangiorgi. SCC: a service centered
calculus. Proceedings of WS-FM, vol. 4184, pages 38–57, 2006. (Cited on
pages 14, 56 and 103.)

Bibliography 197

[Boreale et al. 2008] M. Boreale, R. Bruni, R. De Nicola and M. Loreti. Sessions
and pipelines for structured service programming. In Gilles Barthe and Frank
de Boer, editors, Formal Methods for Open Object-Based Distributed Systems,
volume 5051 of Lecture Notes in Computer Science, pages 19–38. Springer
Berlin / Heidelberg, 2008. (Cited on page 14.)

[Bravetti & Zavattaro 2007] M. Bravetti and G. Zavattaro. Towards a unifying theory
for choreography conformance and contract compliance. In Proceedings of the
6th international conference on Software composition, pages 34–50. Springer-
Verlag, 2007. (Cited on page 181.)

[Bravetti & Zavattaro 2008] Mario Bravetti and Gianluigi Zavattaro. A Foundational
Theory of Contracts for Multi-party Service Composition. Fundam. Inform.,
vol. 89, no. 4, pages 451–478, 2008. (Cited on page 20.)

[Bravetti & Zavattaro 2009] Mario Bravetti and Gianluigi Zavattaro. On the expressive
power of process interruption and compensation. Mathematical Structures in
Computer Science, vol. 19, no. 3, pages 565–599, 2009. (Cited on page 161.)

[Brogi et al. 2004] A. Brogi, C. Canal, E. Pimentel and A. Vallecillo. Formalizing Web
Service Choreographies. In Proc. 1st. International Workshop on Web Ser-
vices and Formal Methods, volume 105, pages 73–94. Elsevier, 2004. (Cited on
page 5.)

[Broy 2007] Manfred Broy. Interaction and Realizability. In Jan van Leeuwen,
Giuseppe Italiano, Wiebe van der Hoek, Christoph Meinel, Harald Sack and
František Plášil, editors, SOFSEM 2007: Theory and Practice of Computer
Science, volume 4362 of Lecture Notes in Computer Science, pages 29–50.
Springer Berlin / Heidelberg, 2007. 10.1007/978-3-540-69507-3_3. (Cited on
page 21.)

[Bruni & Mezzina 2008] Roberto Bruni and Leonardo Mezzina. Types and deadlock
freedom in a calculus of services, sessions and pipelines. Submitted for Publi-
cation - AMAST 2008, February 2008. (Cited on page 5.)

[Bruni 2009] Roberto Bruni. Calculi for Service-Oriented Computing. In Marco
Bernardo, Luca Padovani and Gianluigi Zavattaro, editors, Formal Methods
for Web Services, volume 5569 of Lecture Notes in Computer Science, pages
1–41. Springer Berlin / Heidelberg, 2009. 10.1007/978-3-642-01918-0_1. (Cited
on page 13.)

[Buchholtz et al. 2004] M. Buchholtz, H. Riis Nielson and F. Nielson. A calculus for
control flow analysis of security protocols. International Journal of Information
Security, vol. 2, no. 3, pages 145–167, 2004. (Cited on pages 80, 85 and 96.)

[Buscemi & Montanari 2007] Maria Grazia Buscemi and Ugo Montanari. CC-Pi: A
Constraint-Based Language for Specifying Service Level Agreements. 16th

198 Bibliography

European Symposium on Programming (ESOP’07), 2007. (Cited on pages 15,
20 and 59.)

[Busi et al. 2006] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi and
Gianluigi Zavattaro. Choreography and Orchestration Conformance for System
Design. In Paolo Ciancarini and Herbert Wiklicky, editors, COORDINATION,
volume 4038 of Lecture Notes in Computer Science, pages 63–81. Springer,
2006. (Cited on pages 14 and 102.)

[Caires & Cardelli 2001] L. Caires and L. Cardelli. A spatial logic for concurrency
(part I). In Theoretical Aspects of Computer Software, pages 1–37. Springer,
2001. (Cited on pages 114 and 133.)

[Caires & Pfenning 2010] L. Caires and F. Pfenning. Session Types as Intuitionistic
Linear Propositions. In CONCUR 2010-Concurrency Theory: 21th International
Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010, Pro-
ceedings, volume 6269, page 222. Springer-Verlag New York Inc, 2010. (Cited
on pages 18 and 143.)

[Caires & Vieira 2010] Luís Caires and Hugo Torres Vieira. Conversation Types. Theor.
Comput. Sci., 2010. To appear. (Cited on pages 19, 153 and 173.)

[Caires et al. 2008] Luís Caires, Carla Ferreira and Hugo Torres Vieira. A Process
Calculus Analysis of Compensations. In Proc. of Trustworthy Global Computing
(TGC’08), volume 5474 of Lecture Notes in Computer Science, pages 87–103.
Springer, 2008. (Cited on pages 152 and 162.)

[Campadello et al. 2006] S. Campadello, L. Compagna, D. Gidoin, S. Holtmanns,
V. Meduri, J.C. Pazzaglia, M. Seguran and R. Thomas. Scenario Selection and
Definition. Research report A7.D1.1, SERENITY consortium, 2006. (Cited on
pages 163 and 164.)

[Capecchi et al. 2010] Sara Capecchi, Elena Giachino and Nobuko Yoshida. Global
Escape in Multiparty Sessions. In Kamal Lodaya and Meena Mahajan, editors,
IARCS Annual Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS 2010), volume 8 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 338–351, Dagstuhl, Germany, 2010.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. (Cited on pages 19, 152
and 172.)

[Carbone et al. 2004] Marco Carbone, Mogens Nielsen and Vladimiro Sassone. A
Calculus for Trust Management. In Kamal Lodaya and Meena Mahajan, editors,
FSTTCS, volume 3328 of Lecture Notes in Computer Science, pages 161–173.
Springer, 2004. (Cited on pages 41 and 124.)

[Carbone et al. 2006] Marco Carbone, Kohei Honda and Nobuko Yoshida. A Calculus
of Global Interaction based on Session Types. In 2nd Workshop on Develop-

Bibliography 199

ments in Computational Models (DCM), ENTCS, 2006. (Cited on pages 38, 39,
106 and 107.)

[Carbone et al. 2007] Marco Carbone, Kohei Honda and Nobuko Yoshida. Structured
communication-centred programming for web services. In 16th European Sym-
posium on Programming (ESOP), volume 4421 of LNCS, pages 2–17, Braga,
Portugal, March 2007. Springer, Berlin Heidelberg. (Cited on pages 2, 5, 10,
11, 18, 38, 39, 40, 45, 49, 51, 102, 103, 106, 107, 108, 109, 111, 116, 119, 124,
126, 129, 130, 132 and 153.)

[Carbone et al. 2008] Marco Carbone, Kohei Honda and Nobuko Yoshida. Structured
Interactional Exceptions in Session Types. In Proceedings of the 19th inter-
national conference on Concurrency Theory, pages 402–417. Springer-Verlag,
2008. (Cited on pages 19, 152, 154 and 172.)

[Carbone et al. 2009] M. Carbone, K. Honda, N. Yoshida, R. Milner, G. Brown and
S. Ross-Talbot. A Theoretical Basis of Communication-Centred Concurrent Pro-
gramming. Web Services Choreography Working Group mailing list, to appear
as a WS-CDL working report, 2009. (Cited on page 5.)

[Carbone et al. 2010] Marco Carbone, Thomas Hildebrandt, Davide Grohmann and
Hugo A. López. A logic for Choreographies. In 3rd Workshop on Programming
Language Approaches to Concurrency and Communication-cEntric Software
(PLACES), 2010. (Cited on pages 5, 11, 23 and 119.)

[Carbone et al. 2011] Marco Carbone, Thomas Hildebrandt and Hugo A. López. Open
Mixed Refinement. In Nordic Workshop of Programming Theory (NWPT),
Västerås, Sweden, November 2011. (Cited on pages 24, 143, 179 and 192.)

[Carbone et al. 2012] Marco Carbone, Thomas T. Hildebrandt, Hugo A. López, Gian
Perrone and Andrzej Wasowski. Refinement for Transition Systems with Re-
sponses. In 4th International Workshop on Foundation of Interface Technologies
(FIT), 2012. Accepted for publication. (Cited on pages 24 and 179.)

[Carbone 2008] Marco Carbone. Session-based Choreography with Exceptions. In
N. Yoshida and V.T. Vasconcelos, editors, PLACES’08: Procs. of the 1st Workshop
on Programming Language Approaches to Concurrency and Communication-
cEntric Software, volume 241 of ENTCS, pages 35–55, 2008. (Cited on pages 19
and 172.)

[Cardelli & Gordon 2000] Luca Cardelli and Andrew D. Gordon. Anytime, Anywhere:
Modal Logics for Mobile Ambients. In POPL, pages 365–377, 2000. (Cited on
page 122.)

[Cardelli & Gordon 2006] Luca Cardelli and Andrew D. Gordon. Ambient Logic. Math-
ematical Structures in Computer Science, 2006. (Cited on page 133.)

200 Bibliography

[Castagna & Padovani 2009] Giuseppe Castagna and Luca Padovani. Contracts for
Mobile Processes. In Mario Bravetti and Gianluigi Zavattaro, editors, CONCUR,
volume 5710 of Lecture Notes in Computer Science, pages 211–228. Springer,
2009. (Cited on page 20.)

[Castagna et al. 2005] G. Castagna, R. De Nicola and D. Varacca. Semantic Subtyp-
ing for the Pi-Calculus. In Proc.. 20th Annual IEEE Symposium on Logic in
Computer Science, LICS, pages 92–101, 2005. (Cited on page 20.)

[Castagna et al. 2008] Giuseppe Castagna, Nils Gesbert and Luca Padovani. A theory
of contracts for web services. SIGPLAN Not., vol. 43, pages 261–272, January
2008. (Cited on page 20.)

[Cerone & Hennessy 2010] Andrea Cerone and Matthew Hennessy. Process Be-
haviour: Formulae vs. Tests (Extended Abstract). In Sibylle B. Fröschle and
Frank D. Valencia, editors, EXPRESS’10, volume 41 of EPTCS, pages 31–45,
2010. (Cited on page 53.)

[Cesari et al. 2010] L. Cesari, R. Pugliese and F. Tiezzi. A tool for rapid development
of WS-BPEL applications. ACM SIGAPP Applied Computing Review, vol. 11,
no. 1, pages 27–40, 2010. (Cited on page 15.)

[Charatonik & Talbot 2001] Witold Charatonik and Jean-Marc Talbot. The Decidabil-
ity of Model Checking Mobile Ambients. In Laurent Fribourg, editor, CSL,
volume 2142 of Lecture Notes in Computer Science, pages 339–354. Springer,
2001. (Cited on pages 117 and 119.)

[Cook et al. 2006] W. Cook, S. Patwardhan and J. Misra. Workflow patterns in Orc. In
Coordination Models and Languages, pages 82–96. Springer, 2006. (Cited on
page 14.)

[Coppo & Dezani-Ciancaglini 2009] Mario Coppo and Mariangiola Dezani-
Ciancaglini. Structured Communications with Concurrent Constraints. In
TGC’08, volume 5474 of LNCS, pages 104–125. Springer, 2009. (Cited on
pages 15, 18, 59 and 143.)

[Corin & Etalle 2002] Ricardo Corin and Sandro Etalle. An Improved Constraint-
based system for the verification of security protocols. In M. V. Hermenegildo
and G. Puebla, editors, 9th Int. Static Analysis Symp. (SAS), volume 2477 of
LNCS, pages 326–341, Madrid, Spain, Sep 2002. Springer, Heidelberg. (Cited
on pages 80 and 100.)

[Cousot & Cousot 1977] Patrick Cousot and Radhia Cousot. Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints. In POPL, pages 238–252, 1977. (Cited on page 181.)

Bibliography 201

[Crazzolara & Winskel 2001] Federico Crazzolara and Glynn Winskel. Events in secu-
rity protocols. In ACM Conference on Computer and Communications Security,
pages 96–105, 2001. (Cited on pages 80, 81, 93 and 96.)

[Damm & Harel 2001] W. Damm and D. Harel. LSCs: Breathing Life into Message
Sequence Charts. Formal Methods in System Design, vol. 19, no. 1, pages
45–80, 2001. (Cited on page 187.)

[Dams 1996] Dennis Dams. Abstract Interpretation and Partition Refinement for
Model Checking. PhD thesis, Eindhoven University of Technology, July 1996.
(Cited on page 184.)

[de Boer et al. 2000] FS de Boer, M. Gabbrielli and M.C. Meo. A Timed Concurrent
Constraint Language. Information and Computation, vol. 161, no. 1, pages 45–83,
2000. (Cited on page 32.)

[De Nicola & Hennessy 1984] R. De Nicola and M.C.B. Hennessy. Testing equiva-
lences for processes. Theoretical Computer Science, vol. 34, no. 1-2, pages
83–133, 1984. (Cited on pages 12, 53, 54, 98 and 170.)

[de Vries et al. 2010] Edsko de Vries, Vasileios Koutavas and Matthew Hennessy.
Communicating Transactions - (Extended Abstract). In Proc. CONCUR, volume
6269 of Lecture Notes in Computer Science, pages 569–583. Springer, 2010.
(Cited on page 174.)

[Denning 1976] Dorothy E. Denning. A lattice model of secure information flow. Com-
mun. ACM, vol. 19, pages 236–243, May 1976. (Cited on page 93.)

[Dezani-Ciancaglini & De’Liguoro 2010] Mariangiola. Dezani-Ciancaglini and Ugo
De’Liguoro. Sessions and session types: an overview. In Proceedings of the
6th international conference on Web services and formal methods, pages 1–28.
Springer-Verlag, 2010. (Cited on page 10.)

[Diaz et al. 1998] J.F. Diaz, C. Rueda and F. Valencia. A calculus for concurrent pro-
cesses with constraints. CLEI Electronic Journal, vol. 1, no. 2, 1998. (Cited on
page 59.)

[Dijkman et al. 2007a] Remco M. Dijkman, Marlon Dumas and Chun Ouyang. Formal
Semantics and Analysis of BPMN Process Models using Petri Nets. Preprint
7115, Queensland University of Technology, April 2007. (Cited on page 21.)

[Dijkman et al. 2007b] R.M. Dijkman, M. Dumas and C. Ouyang. Formal Semantics
and Automated Analysis of BPMN Process Models. Technical Report 5969,
Queensland University of Technology, 2007. (Cited on page 21.)

[Dolev & Yao 1981] Danny Dolev and Andrew C. Yao. On the security of public key
protocols. Technical report, Dept. of Computer Science, Stanford University,
Stanford, CA, USA, 1981. (Cited on pages 94 and 98.)

202 Bibliography

[Dragoni & Mazzara 2010] Nicola Dragoni and Manuel Mazzara. A Formal Semantics
for the WS-BPEL Recovery Framework. In Cosimo Laneve and Jianwen Su, edi-
tors, Web Services and Formal Methods, volume 6194 of Lecture Notes in Com-
puter Science, pages 92–109. Springer Berlin / Heidelberg, 2010. 10.1007/978-
3-642-14458-5_6. (Cited on page 15.)

[Elsborg et al. 2009] E. Elsborg, T. Hildebrandt and D. Sangiorgi. Type systems for
bigraphs. Trustworthy Global Computing, pages 126–140, 2009. (Cited on
page 191.)

[Emerson 1991] E.A. Emerson. Temporal and modal logic. In Handbook of theoretical
computer science (vol. B), page 1072. MIT Press, 1991. (Cited on pages 114
and 142.)

[European Commission 2007] European Commission. ICT - Information and Commu-
nication Technologies. Work Programme 2007–2008, 2007. (Cited on page 1.)

[Fábregas et al. 2010] Ignacio Fábregas, David de Frutos Escrig and Miguel
Palomino. Logics for Contravariant Simulations. In Formal Techniques for Dis-
tributed Systems: Joint 12th IFIP WG 6.1 International Conference, FMOODS
2010 and 30th IFIP WG 6.1 International Conference, FORTE 2010, Amster-
dam, The Netherlands, June 7-9, 2010, Proceedings, volume 6117, page 224.
Springer-Verlag New York, 2010. (Cited on pages 53 and 183.)

[Fantechi et al. 2008] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese and
F. Tiezzi. A model checking approach for verifying COWS specifications. In
Proceedings of the Theory and practice of software, 11th international con-
ference on Fundamental approaches to software engineering, pages 230–245.
Springer-Verlag, 2008. (Cited on page 15.)

[Ferreira et al. 2010] Carla Ferreira, Ivan Lanese, António Ravara, Hugo Torres Vieira
and Gianluigi Zavattaro. Advanced Mechanisms for Service Combination and
Transactions. In Rigorous Software Engineering for Service-Oriented Sys-
tems - Results of the SENSORIA project on Software Engineering for Service-
Oriented Computing, LNCS, page 25 pages. Springer, 2010. submitted. (Cited
on pages 15, 152 and 172.)

[Field & Kathleen N. Lohr 1990] Marilyn J. Field and Institute of Medicine Kathleen
N. Lohr Editors; Committee to Advise the Public Health Service on Clinical
Practice Guidelines. Clinical practice guidelines:directions for a new program.
The National Academies Press, 1990. (Cited on page 6.)

[Fiore & Abadi 2001] Marcelo Fiore and Martin Abadi. Computing symbolic mod-
els for verifying cryptographic protocols. Proc. 14th IEEE Computer Security
Foundations Workshop, pages 160–173, 2001. (Cited on page 80.)

Bibliography 203

[Fiore et al. 1999] Marcelo Fiore, Gianluca. Cattani and Glynn Winskel. Weak bisim-
ulation and open maps. In 14th Symposium on Logic in Computer Science
(LICS), pages 67–76. IEEE, 1999. (Cited on pages 187 and 192.)

[Gordon & Fournet 2009] A.D. Gordon and C. Fournet. Principles and applications of
refinement types. Technical Report MSR–TR–2009–147, Microsoft Research,
Cambridge, UK, October 2009. (Cited on pages 18, 19, 143, 144 and 191.)

[Gordon & Jeffrey 2003] A.D. Gordon and A. Jeffrey. Typing correspondence assertions
for communication protocols. Theoretical Computer Science, vol. 300, no. 1-3,
pages 379–409, 2003. (Cited on pages 18 and 143.)

[Guidi et al. 2006] Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi and
Gianluigi Zavattaro. SOCK: A Calculus for Service Oriented Computing. In Asit
Dan and Winfried Lamersdorf, editors, ICSOC, volume 4294 of Lecture Notes in
Computer Science, pages 327–338. Springer, 2006. (Cited on page 14.)

[Harel & Thiagarajan 2004] D. Harel and P. Thiagarajan. Message sequence charts.
UML for Real, pages 77–105, 2004. (Cited on page 21.)

[Heinl et al. 1999] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein and M. Teschke. A
comprehensive approach to flexibility in workflow management systems. ACM
SIGSOFT Software Engineering Notes, vol. 24, no. 2, pages 79–88, 1999. (Cited
on page 6.)

[Hennessy & Milner 1980] Matthew Hennessy and Robin Milner. On Observing Non-
determinism and Concurrency. In Proceedings of the 7th Colloquium on Au-
tomata, Languages and Programming, pages 299–309. Springer-Verlag London,
UK, 1980. (Cited on page 11.)

[Hennessy & Milner 1985] Matthew Hennessy and Robin Milner. Algebraic laws for
nondeterminism and concurrency. Journal of the ACM (JACM), vol. 32, no. 1,
pages 137–161, 1985. (Cited on page 31.)

[Hennessy 2007] Matthew Hennessy. A distributed pi-calculus. Cambridge Univ
Press, 2007. (Cited on pages 40 and 124.)

[Hildebrandt & López 2009] Thomas Hildebrandt and Hugo A. López. Types for Se-
cure Pattern Matching with Local Knowledge in Universal Concurrent Con-
straint Programming . In 25th International Conference on Logic Programming
(ICLP), volume 5649 of Lecture Notes in Computer Science, pages 417–431.
Springer, Berlin Heidelberg, 2009. (Cited on pages 12 and 23.)

[Hildebrandt & Mukkamala 2010] Thomas T. Hildebrandt and Raghava Rao Mukka-
mala. Declarative Event-Based Workflow as Distributed Dynamic Condition
Response Graphs. In Kohei Honda and Alan Mycroft, editors, PLACES, vol-
ume 69 of EPTCS, page 59, 2010. (Cited on pages 16, 184 and 187.)

204 Bibliography

[Hildebrandt et al. 2011] Thomas Hildebrandt, Raghava Mukkamala and Tijs Slaats.
Safe Distribution of Declarative Processes. In Gilles Barthe, Alberto Pardo
and Gerardo Schneider, editors, Software Engineering and Formal Methods,
volume 7041 of Lecture Notes in Computer Science, pages 237–252. Springer
Berlin / Heidelberg, 2011. 10.1007/978-3-642-24690-6_17. (Cited on pages 16,
184 and 187.)

[Hoare 1983] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM,
vol. 26, no. 1, pages 100–106, 1983. (Cited on page 21.)

[Højsgaard & Hallwyl 2012] Espen Højsgaard and Tim Hallwyl. Core BPEL: Syntac-
tic Simplification of WS-BPEL 2.0. In Proceedings of the 27th ACM Symposium
on Applied Computing (SAC’12)., 2012. (Cited on page 7.)

[Honda et al. 1998] Kohei Honda, Vasco T. Vasconcelos and Makoto Kubo. Language
Primitives and Type Discipline for Structured Communication-Based Program-
ming. In 7th European Symposium on Programming (ESOP): Programming
Languages and Systems, pages 122–138. Springer-Verlag London, UK, 1998.
(Cited on pages 4, 10, 11, 15, 17, 18, 21, 36, 37, 40, 42, 45, 57, 59, 61, 67, 76,
102, 103, 104, 111, 124, 129, 143, 156 and 172.)

[Honda et al. 2008] Kohei Honda, Nobuko Yoshida and Marco Carbone. Multiparty
asynchronous session types. In George C. Necula and Philip Wadler, editors,
POPL, pages 273–284. ACM, 2008. (Cited on pages 19 and 143.)

[Hongli et al. 2007] Yang Hongli, Zhao Xiangpeng, Cai Chao and Qiu Zongyan. Ex-
ploring the Connection of Choreography and Orchestration with Exception Han-
dling and Finalization/Compensation. In John Derrick and Jüri Vain, editors,
Formal Techniques for Networked and Distributed Systems – FORTE 2007,
volume 4574 of Lecture Notes in Computer Science, pages 81–96. Springer
Berlin / Heidelberg, 2007. 10.1007/978-3-540-73196-2_6. (Cited on pages 5,
15, 102 and 172.)

[Hüttel 2011] Hans Hüttel. Typed Ψ-calculi. In Joost-Pieter Katoen and Barbara
König, editors, CONCUR 2011 – Concurrency Theory, volume 6901 of Lecture
Notes in Computer Science, pages 265–279. Springer Berlin / Heidelberg, 2011.
10.1007/978-3-642-23217-6_18. (Cited on page 191.)

[Jensen 1994] Kurt Jensen. An Introduction to the Theoretical Aspects of Coloured
Petri Nets. In A Decade of Concurrency, Reflections and Perspectives, REX
School/Symposium, pages 230–272, London, UK, 1994. Springer-Verlag. (Cited
on page 16.)

[Joyal et al. 1993] A. Joyal, M. Nielson and G. Winskel. Bisimulation and open maps.
In Eighth Annual IEEE Symposium on Logic in Computer Science (LICS), pages
418–427. IEEE, 1993. (Cited on pages 29, 187 and 192.)

Bibliography 205

[Kavantzas et al. 2004] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon
and C. Barreto. Web services choreography description language version 1.0.
W3C Working Draft, vol. 17, pages 10–20041217, 2004. (Cited on pages 5, 9, 38,
102 and 106.)

[Keller 1976] R.M. Keller. Formal verification of parallel programs. Communications
of the ACM, vol. 19, no. 7, pages 371–384, 1976. (Cited on page 29.)

[Kitchin et al. 2009] D. Kitchin, A. Quark, W. Cook and J. Misra. The Orc programming
language. Formal techniques for Distributed Systems, pages 1–25, 2009. (Cited
on page 14.)

[La Rue 2011] F. La Rue. Report of the Special Rapporteur on the promotion and
protection of the right to freedom of opinion and expression. United Nations
General Assembly Human Rights Council, 2011. (Cited on page 1.)

[Lamport 1994] Leslie Lamport. The Temporal Logic of Actions. ACM Transactions
on Programming Languages and Systems, vol. 16, no. 3, pages 872–923, May
1994. (Cited on page 8.)

[Lanese et al. 2007] I. Lanese, V.T. Vasconcelos, F. Martins and A. Ravara. Disci-
plining Orchestration and Conversation in Service-Oriented Computing. Fifth
IEEE International Conference on Software Engineering and Formal Methods
(SEFM’2007), pages 305–314, 2007. (Cited on pages 5, 14, 15 and 56.)

[Lanese et al. 2008] Ivan Lanese, Claudio Guidi, Fabrizio Montesi and Gianluigi Za-
vattaro. Bridging the Gap between Interaction- and Process-Oriented Chore-
ographies. In Antonio Cerone and Stefan Gruner, editors, SEFM, pages 323–332.
IEEE Computer Society, 2008. (Cited on page 5.)

[Lanese et al. 2010] Ivan Lanese, Cátia Vaz and Carla Ferreira. On the Expressive
Power of Primitives for Compensation Handling. In Proc. of ESOP, volume 6012
of Lecture Notes in Computer Science, pages 366–386. Springer, 2010. (Cited
on page 174.)

[Laneve & Padovani 2007] Cosimo Laneve and Luca Padovani. The must preorder
revisited. CONCUR 2007–Concurrency Theory, pages 212–225, 2007. (Cited on
page 53.)

[Laneve & Padovani 2008] Cosimo Laneve and Luca Padovani. The Pairing of Con-
tracts and Session Types. In Pierpaolo Degano, Rocco De Nicola and José
Meseguer, editors, Concurrency, Graphs and Models, volume 5065 of Lecture
Notes in Computer Science, pages 681–700. Springer, 2008. (Cited on page 20.)

[Laneve & Zavattaro 2005] Cosimo Laneve and Gianluigi Zavattaro. Foundations of
Web Transactions. In Vladimiro Sassone, editor, Foundations of Software Sci-
ence and Computational Structures, volume 3441 of LNCS, pages 282–298.
Springer, Berlin Heidelberg, 2005. (Cited on pages 15 and 173.)

206 Bibliography

[Lapadula et al. 2007a] Alessandro Lapadula, Rosario Pugliese and Francesco Tiezzi.
A calculus for orchestration of web services. In Proc. of 16th European Sympo-
sium on Programming (ESOP’07), volume 4421 of Lecture Notes in Computer
Science, pages 33–47. Springer, 2007. (Cited on pages 5, 14, 15, 56, 103, 104
and 172.)

[Lapadula et al. 2007b] Alessandro Lapadula, Rosario Pugliese and Francesco Tiezzi.
COWS: a timed service-oriented calculus. In Proceedings of the 4th in-
ternational conference on Theoretical aspects of computing, pages 275–290.
Springer-Verlag, 2007. (Cited on pages 15 and 172.)

[Lapadula et al. 2008] Alessandro Lapadula, Rosario Pugliese and Francesco Tiezzi.
A Formal Account of WS-BPEL. In Doug Lea and Gianluigi Zavattaro, editors,
COORDINATION, volume 5052 of Lecture Notes in Computer Science, pages
199–215. Springer, 2008. (Cited on page 14.)

[Larsen & Thomsen 1988] Kim Guldstrand Larsen and Bent Thomsen. A Modal Pro-
cess Logic. In 3rd. Annual Symposium on Logic in Computer Science, 5-8 July,
pages 203–210, Edinburgh, Scotland, UK, 1988. IEEE Computer Society. (Cited
on page 184.)

[Larsen et al. 2007] Kim Guldstrand Larsen, Ulrik Nyman and Andrzej Wasowski. On
Modal Refinement and Consistency. In Luís Caires and Vasco Thudichum Vas-
concelos, editors, CONCUR, volume 4703 of Lecture Notes in Computer Science,
pages 105–119. Springer, 2007. (Cited on page 181.)

[López & Pérez 2011] Hugo A. López and Jorge A. Pérez. Timed, Compensable Con-
versations. In 4th Programming Language Approaches to Concurrency and
Communication-cEntric Software (PLACES), 2011. (Cited on page 23.)

[López & Pérez 2012] Hugo A. López and Jorge A. Pérez. Time and Exceptional
Behavior in Multiparty Structured Communications. In Marco Carbone and
Jean-Marc Petit, editors, Web Services and Formal Methods (WS-FM), volume
(To appear) of Lecture Notes in Computer Science. Springer, 2012. (Cited on
pages 11, 12 and 23.)

[López et al. 2006] Hugo A. López, Jorge A. Pérez, Catuscia Palamidessi, Camilo
Rueda and Frank D. Valencia. A Declarative Framework for Security: Secure
Concurrent Constraint Programming. In Sandro Etalle and M. Truszczyński,
editors, 22th International Conference on Logic Programming (ICLP’06), volume
4079 of Lecture Notes in Computer Science. Springer, Heidelberg, 2006. (Cited
on page 80.)

[López et al. 2009] Hugo A. López, Fabio Massacci and Nicola Zannone. Goal-
Equivalent Secure Business Process Re-engineering. In E. Di Nitto and M. Ri-
peanu, editors, Service-Oriented Computing - ICSOC 2007 Workshops, volume

Bibliography 207

4907 of LNCS, pages 212—223, Berlin, Heidelberg, January 2009. Springer -
Verlag. (Cited on pages 24, 163 and 164.)

[López et al. 2010] Hugo A. López, Carlos Olarte and Jorge A. Pérez. Towards a Uni-
fied Framework for Declarative Structured Communications. In 2nd Workshop
on Programming Language Approaches to Concurrency and Communication-
cEntric Software (PLACES), volume 17 of EPTCS, pages 1–15, 2010. (Cited on
pages 11, 23, 111 and 172.)

[López 2010] Hugo A. López. Models for Trustworthy Service and Process Oriented
Systems. In 26th International Conference on Logic Programming (ICLP), vol-
ume 7 of Leibniz International Proceedings in Informatics (LIPIcs), pages 270–
276, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. (Cited on page 23.)

[Lowe 1995] Gavin Lowe. An attack on the Needham-Schroeder public-key authen-
tication protocol. Inf. Process. Lett., vol. 56, no. 3, pages 131–133, 1995. (Cited
on page 96.)

[Lyng et al. 2008] Karen Marie Lyng, Thomas Hildebrandt and Raghava Rao Mukka-
mala. The Resultmaker Online Consultant: From Declarative Workflow Man-
agement in Practice to LTL. In Proc. of 1st Intl. Workshop on Dynamic and
Declarative Business Processes (DDBP), Munich, Germany, 2008. (Cited on
pages 6, 16 and 103.)

[Lyng et al. 2009] Karen Marie Lyng, Thomas T. Hildebrandt and Rao Mukkamala.
From paper based clinical practice guidelines to declarative workflow manage-
ment. In Business Process Management Workshops, pages 336–347. Springer,
2009. (Cited on page 152.)

[Manna & Pnueli 1992] Zohar Manna and Amir Pnueli. The temporal logic of reactive
and concurrent systems: Specification. Springer, 1992. (Cited on pages 6, 35,
45, 62 and 65.)

[Miculan & Bacci 2006] Marino Miculan and Giorgio Bacci. Modal Logics for Brane
Calculus. In Corrado Priami, editor, CMSB, volume 4210 of Lecture Notes in
Computer Science, pages 1–16. Springer, 2006. (Cited on page 122.)

[Miller 2003] Dale Miller. Encryption as an abstract data type: An Extended Abstract.
In Foundations of Computer Security (FCS), volume 84 of Electronic Notes in
Theoretical Computer Science, pages 3–15. Springer, Heidelberg, 2003. (Cited
on pages 80 and 100.)

[Milner et al. 1992] Robin Milner, Joachim Parrow and David Walker. A Calculus
of Mobile Processes, Parts I and II. Journal of Information and Computation,
vol. 100, pages 1–77, September 1992. (Cited on pages 10, 84 and 152.)

208 Bibliography

[Milner 1991] Robin Milner. The Polyadic Pi Calculus: A Tutorial. Technical Report
100(1), Information and Computation, 1991. (Cited on page 17.)

[Milner 1995] Robin Milner. Communication and concurrency. Prentice Hall Interna-
tional (UK) Ltd., Hertfordshire, UK, UK, 1995. (Cited on page 27.)

[Milner 1999] Robin Milner. Communicating and Mobile systems. the Pi Calculus.
Cambridge University Press, 1999. (Cited on pages 27, 40, 52, 109, 124 and 170.)

[Misra & Cook 2006] Jayadev Misra and William R. Cook. Computation Orchestration:
A Basis for Wide-Area Computing. Journal of Software and Systems Modeling,
May 2006. (Cited on pages 5, 13 and 102.)

[Montangero & Semini 2006] Carlo Montangero and Laura Semini. A Logical View of
Choreography. In Coordination models and languages: 8th international con-
ference, COORDINATION 2006, Bologna, Italy, June 14-16, 2006: proceedings,
volume 4038 of Lecture Notes in Computer Science, pages 179–193. Springer-
Verlag New York, 2006. (Cited on pages 5 and 16.)

[Montesi et al. 2007] Fabrizio Montesi, Claudio Guidi and Gianluigi Zavattaro. Com-
posing Services with JOLIE. In ECOWS, pages 13–22. IEEE Computer Society,
2007. (Cited on page 15.)

[Muehlen & Recker 2008] M. Muehlen and J. Recker. How much language is enough?
Theoretical and practical use of the business process modeling notation. In
Advanced Information Systems Engineering, pages 465–479. Springer, 2008.
(Cited on page 7.)

[Nielsen et al. 2002] Mogens Nielsen, Catuscia Palamidessi and Frank Valencia.
Temporal Concurrent Constraint Programming: Denotation, Logic and Appli-
cations. Nordic J. of Computing, 2002. (Cited on pages 56, 57, 62 and 76.)

[Nørgaard et al. 2005] A. K. Nørgaard, L. Pedersen and P. Strøiman. Method for
generating a workflow on a computer, and a computer system adapted for
performing the method. Patent, 05 2005. US 6895573. (Cited on pages 6
and 103.)

[Object Management Group 2011] Object Management Group. Business Process
Model and Notation (BPMN), Version 2.0. Available at http://www.omg.org/
spec/BPMN/2.0/, January 2011. (Cited on pages 3, 5 and 20.)

[Olarte & Valencia 2008a] C. A. Olarte and F. D. Valencia. Universal Concurrent Con-
straint Programming: Symbolic Semantics and Applications to Security. In
23rd Annual ACM Symposium on Applied Computing (SAC), 2008. (Cited on
pages 10, 11, 32, 33, 34, 35, 57, 62, 65, 80, 81, 82, 84, 99 and 192.)

[Olarte & Valencia 2008b] Carlos Alberto Olarte and Frank D. Valencia. The Expres-
sivity of Universal Timed CCP. In 10th International ACM SIGPLAN Symposium

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

Bibliography 209

on Principles and Practice of Declarative Programming, Valencia, Spain, July
2008. ACM Press, New York. (Cited on pages 35, 57, 62 and 93.)

[Ouyang et al. 2006] C. Ouyang, W.M.P. van der Aalst, M. Dumas and A.H.M. ter Hofst-
ede. Translating BPMN to BPEL. BPM Center Report BPM-06-02, BPMcenter.
org, 2006. (Cited on page 20.)

[Palamidessi et al. 2006] C. Palamidessi, V. Saraswat, F.D. Valencia and B. Victor. On
the Expressiveness of Linearity vs Persistence in the Asychronous Pi-Calculus.
In Proceedings of the 21st Annual IEEE Symposium on Logic in Computer
Science, pages 59–68. IEEE Computer Society Washington, DC, USA, 2006.
(Cited on pages 100 and 192.)

[Pérez et al. 2012] Jorge A. Pérez, L. Caires, Frank Pfenning and Bernardo Toninho.
Linear Logical Relations for Session-Based Concurrency. In European Sympo-
sium on Programming, 2012. To appear. (Cited on pages 18 and 143.)

[Pesic & van der Aalst 2006] M. Pesic and W.M.P. van der Aalst. A Declarative Ap-
proach for Flexible Business Processes Management. Lecture Notes in Com-
puter Science, vol. 4103, page 169, 2006. (Cited on pages 6, 16, 56, 75, 76
and 103.)

[Pesic 2008] M. Pesic. Constraint-based workflow management systems: shifting
control to users. PhD thesis, Technische Universiteit Eindhoven, 2008. (Cited
on pages 16 and 17.)

[Peterson 1977] James L. Peterson. Petri Nets. ACM Comput. Surv., vol. 9, no. 3, pages
223–252, 1977. (Cited on page 16.)

[Pierce & Sangiorgi 1993] B. Pierce and D. Sangiorgi. Typing and subtyping for mo-
bile processes. In Logic in Computer Science, 1993. LICS’93., Proceedings of
Eighth Annual IEEE Symposium on, pages 376–385. IEEE, 1993. (Cited on
page 17.)

[Pitts 2003] A.M. Pitts. Nominal logic, a first order theory of names and binding.
Information and computation, vol. 186, no. 2, pages 165–193, 2003. (Cited on
page 193.)

[Plotkin 1981] G. D. Plotkin. A Structural Approach to Operational Semantics. Tech-
nical report, University of Aarhus, 1981. (Cited on pages 29 and 107.)

[Pnueli 1977] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, volume 17, pages 46 –57. IEEE, 1977.
(Cited on page 44.)

[Post 1944] Emil L. Post. Recursively enumerable sets of positive integers and their
decision problems. Bulletin of the American Mathematical Society, vol. 50,
pages 284–316, 1944. (Cited on pages 117 and 118.)

210 Bibliography

[Prandi & Quaglia 2007] D. Prandi and P. Quaglia. Stochastic cows. Service-Oriented
Computing–ICSOC 2007, pages 245–256, 2007. (Cited on page 15.)

[Prandi et al. 2008] Davide Prandi, Paola Quaglia and Nicola Zannone. Formal anal-
ysis of BPMN via a translation into COWS. In Coordination Models and Lan-
guages, pages 249–263. Springer, 2008. (Cited on page 21.)

[Puhlmann & Weske 2005] F. Puhlmann and M. Weske. Using the Pi-Calculus for
Formalizing Workflow Patterns. BPM, vol. 3649, pages 153–168, 2005. (Cited
on pages 17 and 103.)

[Puhlmann 2007] Frank Puhlmann. On the Application of a Theory of Mobile Pro-
cesses to Business Process Management. PhD thesis, University of Postdam,
Hasso Platner Institut, July 2007. (Cited on page 15.)

[Recker & Mendling 2006] J. Recker and J. Mendling. On the Translation between
BPMN and BPEL: Conceptual Mismatch between Process Modeling Lan-
guages. In The 18th International Conference on Advanced Information Systems
Engineering. Proceedings of Workshops and Doctoral Consortium., pages 521–
532, Luxembourg, Grand-Duchy of Luxembourg, 2006. Namur University Press.
(Cited on page 21.)

[Reynolds 2002] JC Reynolds. Separation logic: a logic for shared mutable data
structures. Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE
Symposium on, pages 55–74, 2002. (Cited on page 114.)

[Rittenberger et al. 2006] Jon C Rittenberger, James E Bost and James J Menegazzi.
Time to give the first medication during resuscitation in out-of-hospital cardiac
arrest. Resuscitation, vol. 70, no. 2, pages 201–6, Aug 2006. (Cited on page 165.)

[Russell et al. 2009] Nick C. Russell, Wil M. P. van der Aalst and Arthur H. M. ter
Hofstede. Designing a Workflow System Using Coloured Petri Nets. T. Petri
Nets and Other Models of Concurrency, vol. 3, pages 1–24, 2009. (Cited on
page 17.)

[Rutten 2000] J. Rutten. Coalgebra, concurrency, and control. Discrete event systems:
analysis and control, vol. 569, page 31, 2000. (Cited on pages 52, 53 and 186.)

[Rychkova et al. 2008] I. Rychkova, G. Regev and A. Wegmann. Using declarative
specifications in business process design. International Journal of Computer
Science and Applications, vol. 5, no. 3b, pages 45–68, 2008. (Cited on page 6.)

[Sandhu 1993] RS Sandhu. Lattice-based access control models. Computer, vol. 26,
no. 11, pages 9–19, 1993. (Cited on page 93.)

[Sangiorgi & Walker 2001] Davide Sangiorgi and David Walker. Pi-calculus: A the-
ory of mobile processes. Cambridge University Press, New York, NY, USA, 2001.
(Cited on pages 27, 56 and 62.)

Bibliography 211

[Saraswat et al. 1994] Vijay A. Saraswat, Radha Jagadeesan and Vineet Gupta. Foun-
dations of timed concurrent constraint programming. In Proceedings of the
Ninth Annual IEEE Symposium on Logic in Computer Science (LICS 1994),
pages 71–80. IEEE Computer Society Press, July 1994. (Cited on pages 32, 56,
61 and 80.)

[Saraswat 1993] V. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
(Cited on pages 10, 15, 32, 56, 57 and 62.)

[Smith 1990] Gary Wayne Smith. The modeling and representation of security seman-
tics for database applications. PhD thesis, George Mason University, Faifax,
VA, USA, 1990. UMI Order No. GAX90-25973. (Cited on page 93.)

[Su et al. 2007] J. Su, T. Bultan, X. Fu and X. Zhao. Towards a theory of web service
choreographies. In WS-FM, volume 4937, pages 1–16. Springer, 2007. (Cited
on page 5.)

[Takeuchi et al. 1994] Kaku Takeuchi, Kohei Honda and Makoto Kubo. An Interaction-
based Language and its Typing System. In Constantine Halatsis, Dimitris G.
Maritsas, George Philokyprou and Sergios Theodoridis, editors, PARLE, volume
817 of Lecture Notes in Computer Science, pages 398–413. Springer, 1994.
(Cited on page 17.)

[Terenziani et al. 2000] P. Terenziani, F. Mastromonaco, G. Molino and M. Torchio.
Executing clinical guidelines: temporal issues. In Proceedings of the AMIA
Symposium, page 848. American Medical Informatics Association, 2000. (Cited
on page 167.)

[Thatte 2001] S. Thatte. XLANG: web services for business process design, 2001. Mi-
crosoft http://www.gotdotnet.com/team/xml-wspecs/xlang-cl/default.

htm, 2001. (Cited on page 14.)

[Valencia 2002] Frank D. Valencia. Temporal Concurrent Constraint Programming.
PhD thesis, University of Aarhus, November 2002. (Cited on page 98.)

[van der Aalst & Pesic 2006] W.M.P. van der Aalst and M. Pesic. DecSerFlow: To-
wards a Truly Declarative Service Flow Language. Lecture Notes in Computer
Science, vol. 4184, page 1, 2006. (Cited on pages 6, 16, 56 and 103.)

[Van Der Aalst & Ter Hofstede 2005] W.M.P. Van Der Aalst and A.H.M. Ter Hofstede.
YAWL: yet another workflow language. Information Systems, vol. 30, no. 4,
pages 245–275, 2005. (Cited on page 17.)

[van Der Aalst et al. 2003] W.M.P. van Der Aalst, A.H.M. Ter Hofstede, B. Kie-
puszewski and A.P. Barros. Workflow patterns. Distributed and parallel
databases, vol. 14, no. 1, pages 5–51, 2003. (Cited on page 17.)

http://www.gotdotnet.com/team/xml-wspecs/xlang-cl/default.htm
http://www.gotdotnet.com/team/xml-wspecs/xlang-cl/default.htm

212 Bibliography

[van der Aalst et al. 2009] Wil M. P. van der Aalst, Maja Pesic and Helen Schonen-
berg. Declarative workflows: Balancing between flexibility and support. Com-
puter Science - R&D, vol. 23, no. 2, pages 99–113, 2009. (Cited on page 16.)

[van der Aalst 1998] W.M.P. van der Aalst. The Application of Petri Nets to Workflow
Management. The Journal of Circuits, Systems and Computers, vol. 8, no. 1,
pages 21–66, 1998. (Cited on pages 17 and 56.)

[van der Aalst 2003] W. M. P. van der Aalst. Challenges in business process man-
agement: Verification of business processes using Petri nets. Bulletin of the
EATCS, vol. 80, pages 174–199, 2003. European Association for Theoretical
Computer Science (EATCS). (Cited on page 17.)

[van Glabbeek 1990] R. J. van Glabbeek. The linear time-branching time spectrum. In
Proceedings of the Theories of Concurrency: Unification and Extension, pages
278—297, 1990. (Cited on page 52.)

[van Riemsdijk & Wirsing 2007] M.B. van Riemsdijk and M. Wirsing. Using Goals for
Flexible Service Orchestration. LNCS, vol. 4504, page 31, 2007. (Cited on
page 5.)

[Victor & Parrow 1998] Björn Victor and Joachim Parrow. Concurrent Constraints in
the Fusion Calculus. In Proc. of ICALP, volume 1443 of LNCS, pages 455–469.
Springer, 1998. (Cited on pages 20 and 59.)

[Vieira et al. 2008] H.T. Vieira, L. Caires and J.C. Seco. The Conversation Calculus:
A Model of Service-Oriented Computation. In Programming languages and
systems: 17th European Symposium on Programming (ESOP), page 269, Bu-
dapest, Hungary, 2008. Springer-Verlag New York. (Cited on pages 10, 11, 42,
103, 152, 156, 172 and 174.)

[Vieira 2010] Hugo T. Vieira. A Calculus for Modeling and Analyzing Conversations in
Service-Oriented Computing. PhD thesis, Universidade Nova de Lisboa, 2010.
(Cited on pages 5, 42, 152, 153, 156, 157 and 159.)

[Wehrman et al. 2008] Ian Wehrman, David Kitchin, William R. Cook and Jayadev
Misra. A timed semantics of Orc. Theor. Comput. Sci., vol. 402, no. 2-3, pages
234–248, 2008. (Cited on pages 14, 15 and 172.)

[Winskel 2005] G. Winskel. Relations in Concurrency. In 20th Annual IEEE Sym-
posium on Logic in Computer Science (LICS), pages 2–11, 2005. (Cited on
pages 187 and 192.)

[Wong 2010] P.Y.H. Wong. Formalisations and Applications of Business Process Mod-
elling Notation. PhD thesis, University of Oxford, 2010. (Cited on page 21.)

[Xu et al. 1998] Jie Xu, Alexander B. Romanovsky and Brian Randell. Coordinated
Exception Handling in Distributed Object Systems: From Model to System
Implementation. In ICDCS, pages 12–21, 1998. (Cited on page 162.)

Bibliography 213

	Abstract
	Acknowledgments
	Contents
	List of Figures
	Introduction
	Motivation
	Communication-Centred Programming

	Specifying Communication-Centred Programming.
	Global vs. Local Views
	Imperative vs. Declarative Specifications

	Overview of this Dissertation
	Process Calculi
	Approach
	Contributions

	Related Work
	Process Calculi
	Declarative Specifications
	Petri Nets
	Type Systems
	Behavioural Contracts
	Modelling Standards

	Organisation and Structure
	Publication list
	Document Structure

	Technical Background
	Process Calculi
	A Process Calculus for Mobile Systems
	(Temporal) Concurrent Constraint Programming
	Languages for Structured Communications
	The Conversation Calculus

	Verification
	Linear Temporal Logic
	Session Types for the Global Calculus
	Session Types for the End-Point Calculus
	End Point Projection

	Behavioural Equivalences between Processes
	Simulations & Bisimulations
	Testing Theories

	A Unified Framework for Declarative Structured Communications
	Introduction
	Motivation.
	This Work.
	A Compelling Example.
	Related Work.

	Preliminaries
	A Language for Structured Communication
	Timed Concurrent Constraint Programming

	A Declarative Interpretation for Structured Communications
	Operational Correspondence.

	A Timed Extension of HVK
	Case Study: Electronic booking
	Exploiting the Logic Correspondence

	Concluding Remarks

	Types for Security and Mobility in Universal CCP
	Introduction
	Preliminaries
	utcc and Secure Pattern Matching
	Motivating a refined universal abstraction in utcc
	Types for secure abstraction patterns in utcc

	Applications
	Mobility & Access Control
	Security Protocols

	Discussion and Future Work
	Further comments on Secrecy
	Future Work

	Modal Logics for Structured Communications
	Introduction
	An Example

	The Global Calculus
	Syntax
	Semantics
	Session Types for the Global Calculus

	GL: A Logic for the Global Calculus
	Syntax
	Semantics

	Undecidability of Global Logic
	Proof System for GL
	End-Point Calculus
	Syntax
	Semantics
	Session Types for the End-Point Calculus
	End Point Projection

	LL: A logic for End Points
	Examples of formulae in LL
	Semantics of LL
	Translation from GL to LL
	LL : Proof System

	Conclusion and Related Work
	Appendix Global Calculus: Reduction Semantics
	Appendix Global Calculus: Typing Rules
	Appendix End-Point Calculus: Reduction Semantics
	Appendix End-Point Calculus: Typing rules
	Appendix End Point Projection: Merging
	Appendix End Point Projection: Thread Projection

	Time and Exceptional Behaviour in Multiparty Structured Interactions
	Introduction
	The Conversation Calculus
	C3: CC + Time + Compensations
	Expressiveness
	A Healthcare Compelling Example
	 The Medicine Delivery Scenario.

	Timed and Compensating Models.
	Exceptional Behavior.
	A timed model.
	Putting all together.
	 The Semantics At Work.
	 Refining the Initial Model.

	Related Work
	Concluding Remarks
	Appendix Further Examples: Running the Buyer-Seller example
	Appendix Proofs of Proposition 6.6.4

	Towards Refinement Relations in Open Specifications
	Refinement for Open Mixed Trees
	Open Mixed Trees and Refinement

	Refinement for Transition Systems with Responses
	Transition Systems with Responses and Refinement

	Discussion and Future Work

	Final words
	Conclusions
	Current and Future work

	Bibliography

