
Submitted to:
PLACES 2016

c© H.A. López, F. Nielson & H.R. Nielson
This work is licensed under the
Creative Commons Attribution License.

Type-checking Availability in Choreographic Programming

Hugo A. López Flemming Nielson Hanne Riis Nielson
Technical University of Denmark

Kongens Lyngby, Denmark

Choreographic programming is a programming-language design approach that drives a safe proto-
col development in distributed systems. We study choreographic programming for loosely-coupled
infrastructures, where the availability of components may change at runtime. We introduce a chore-
ography language featuring novel operators for multiparty, partial and collective communications;
we provide a type discipline that controls how partial communications refer only to available com-
ponents; and we show that well-typed choreographies enjoy progress.

1 Introduction

Choreographies are an emerging paradigm in concurrent programming aiming at providing a correct-
by-construction framework for distributed systems [1, 2]. Protocols, dubbed choreographies, provide
a global vision on how the communications among different components in a distributed system shall
be structured. Once defined, choreographies serve as stepping stones to guide the implementation of a
system, both by automating the generation of deadlock-free code for each component involved (EndPoint
Projection), by monitoring that the execution of a distributed system behaves according to a protocol, and
even by healing anomalous executions of a distributed system.
Choreographic languages studied so far have assumed an underlying tighly-coupled infrastructure, mean-
ing that all the components involved in a protocol are present along the entire life of a system. A protocol
for a tighly-coupled infrastructure considers the absence of one of the components as a failure. The case
of Cyber-Physical Systems (CPS) represents a challenge for choreographies. CPS run under loosely-
coupled infrastructures, where the assumptions regarding the availability components require relaxation.
For instance, in a CPS, sensors can become temporarily unavailable due to multiple aspects (battery fail-
ure, climatic conditions, sensor malfunction, distance of the RF transceiver, etc.) More the norm than
the exception, practitioners in CPS must take availability into consideration, programming safety-critical
applications in a failure-aware fashion. A component at risk of damage will be normally deployed in a
redundant manner, to avoid that the system blocks in case such component fails. It is more conceivable
then to move from point-to-point to collective communications, such as broadcast and reduce. In this
way, one can model scenarios where decisions are based on the aggregate of the communcation received
from redundant components, rather on a single unit. In the design of loosely-coupled systems, the spec-
ification should accept that some of the components may be unavailable, and work properly as long as a
minimum set is. This assumption modify our correctness criteria, and poses the following question:

Can we ensure progress in distributed systems with variable availability conditions?
The study of communication protocols including collective communications has recently spawn different
research directions (c.f. [4, 3, 7, 8, 9].) In this paper we introduce a choreography language featuring
novel operators for multiparty, partial, collective communications. It is a generalization of the global
calculus [2], restricted to limited asynchrony, furtherly enriched with quality predicates [10]. Our novel
communication primitives impose softer requirements on component availability. The use of q as a
quality predicate is common to all communication interactions. Its inclusion derives from the Quality

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Type-checking Availability in Choreographic Programming

t1[S]{X1}, t2[S]{X2}, t3[S]{X3} start tm[M]{Xm} : temperature(k); (1)

tm{Xm;Ym}9> &q1(t1{X1;Y1}, t2{X2;Y2}, t3{X3;Y3}) : k[measure]; (2)

&q2(t1{Y1;Z1}.“1◦”, t2{Y2;Z2}.“−2◦”, t3{Y3;Z3}.“5◦”)9> tm{Ym;Zm} : xm : 〈k,avg〉; 0 (3)

Figure 1: Example: Sensor network choreography

Calculus [10], and allows one to describe interactions under a subset of available participants. Addition-
ally, GCq annotates threads with atomic formulae {X ;Y}. One way of seeing them is as capabilities that
must be achieved before a thread can continue. We provide an illustrative example of the language.

Example 1.1 (Sensor Networks (SN)). SN are commonly deployed in unreliable conditions, making
their nodes easily unavailable. Measurements performed by SN do not depend on the reliability of one
node, but they rather require readings from a reasonable subset of the nodes deployed. Figure 1 portrays a
simple SN choreography for temperature measurement. The syntax in black font corresponds to classical
choreographies [2] extended with collective communications [9]. Line 1 models a session establishment
phase running between sensors t1, t2, t3 and a new thread tm in the monitor. In Line 2, tm executes a
collective selection of method measure in each sensor. Line 3 will reduce all the measurements in the
sensors, and compute its average in the monitor. Quality predicates (in green font) q1 and q2 decree
the availability requirements for the SN. For instance, q1 = q2 = ∀ only allows communications with all
sensors in place, while q1 = ∀,q2 = 2/3 tolerates the absence of readings in one sensor. Finally, progress
capabilities (in blue font) {X ;Y} define with X the required capability for a thread to be executed, and
with Y the capability offered after its engagement. For session establishment, no capability is required.

In §2 we introduce the GCq choreography language. The novel communication primitives in GCq greatly
affect progress guarantees for choreographies, since collective communications specified without due
care of the quality predicates used will lead into systems that block due to unavailable components. In §3
we present a type system, orthogonal to session types, that ensures progress under variable availability
conditions. Finally, §4 concludes the paper. In the Appendix we present full definitions and the proof
sketches of the main results.

2 The Global Quality Calculus (GCq)

In the sequel, C,C′ are choreographies; t, t ′, . . . are threads and A1,A2, . . . are role annotations. Annotated
threads range over p1, . . . , pn. Variable a ranges over service channels, intuitively denoting the public
identifier of a service, and k range over a finite, countable set of session (names) N, created at run-
time. Variables x,x′, . . . range over variables local to each thread; Atomic formulae range over X ,Y, . . .;
arithmetic and other first-order expressions excluding service and session channels are denoted by e,e′.
Names m,n range over threads and session channels. Finally, q indicates a quality predicate, that de-
termines when sufficient inputs/outputs are available. As an example, q can be ∃, meaning that one
sender/receiver is required in the interaction, or it can be ∀ meaning that all of them are needed. We
require q to be monotonic and satisfiable.
Definition 2.1 (GCq syntax).

(Choreographies) C,C′,C′′ ::= η ; C | C+C′ | e@p?C′ : C′′ | 0 (Annotated threads) p ::= t[A]{X ;Y}

(Interactions) η ::= p̃r start p̃s : a(k) | pr.e9> &q(p̃s : xs) : k | &q(p̃r.er)9> ps : x : 〈k,op〉 | pr 9> &q(p̃s) : k[l]

H.A. López, F. Nielson & H.R. Nielson 3

For simplicity of presentation, all models in the paper are finite. The addition of operators like recursion
for writing infinite behaviors goes as expected. We will concentrate our discussion to novel interactions.
Annotated threads t[A]{X ;Y} are built from a thread name t, a pair of atomic formulae {X ;Y} and a
role annotation A. Intuitively, X and Y describe the capabilities required/offered in a thread. Interactions
can take various shapes: first, start defines a (multiparty) session initiation between active annotated
threads p̃r and annotated service threads p̃s. Each active thread (resp. service thread) implements the
behaviour of one of the roles in Ãr (resp. Ãs), sharing a new session name k. We assume that a session is
established with at least two participating processes, therefore 2≤ |p̃r|+ |p̃s|, and that threads in p̃r∪ p̃s

are pairwise different. A broadcast takes the form pr.e9> &q(p̃s : xs) : k, where a session channel k is
used to transfer the evaluation of expression e (located at pr) to threads in p̃s, with the resulting binding
of variable xi at pi, for each pi ∈ p̃s. A reduce is written as &q(p̃r.er)9> ps : x : 〈k,op〉, where each
annotated thread pi in p̃r evaluates an expression ei, and the aggregate of all receptions is evaluated
using op (an operator respecting commutative, associativity and neutral elements such as max,min, etc.)
Interaction pr 9> &q(p̃s) : k[l] describes a collective label selection: pr communicates the selection of
label l to peers in p̃s through session k. Explicit x@p/e@p indicates the variable/boolean expression
x/e is located at p. We often omit 0, empty vectors and atomic formulae {X ;Y} from annotated threads
when unnecessary. The free term variables and atomic formulae are defined as usual. They are denoted
by fv(C) and fform(C) respectively. An interaction η in η ; C can bind session channels, processes and
variables. In start , variables {p̃r,a} are free while variables { p̃s,k} are bound (since they are freshly
created). In broadcast, variables x̃s are bound. A reduce comand binds {x}. Finally, we assume that all
bound variables in an expression have been renamed apart from each other, and apart from any other free
variables in the expression.

Expressivity The importance of roles is only crucial in a start interaction. Technically, one can infer
the role of a given thread t used in an interaction η by looking at the start interactions preceding it
in the AST. GCq can still represent unicast message-passing patterns as in [1]. Unicast communication
p1.e9> p2 : x : k can be encoded in multiple ways using broadcast/reduce operators. For instance, p1.e9>
&∀(p2 : x) : k and &∀(p1.e)9> p2 : x : 〈id,k〉 are just a couple of possible implementations.

2.1 Semantics

Choreographies are considered modulo standard structural and swapping congruence relations (resp. ≡,
'C) [2]. The swap congruence provides a way to reorder non-conflicting interactions, allowing for a re-
stricted form of asynchronous behavior. Non-conflicting interactions are those involving sender-receiver
actions that do not conform a control-flow dependency. For instance, tA.eA 9> &q1(tB : xB) : k1; tC.eC 9>
&q2(tD : xD) : k2 'C tC.eC 9> &q2(tD : xD) : k2; tA.eA 9> &q1(tB : xB) : k1. Formally, the operational se-

mantics is given in terms of labelled transition rules. A transition (νm̃) 〈σ ,C〉 λ−→ (ν ñ) 〈σ ′,C′〉 says
that a configuration 〈σ ,C〉 with used names m̃ fires an action λ and evolves into 〈σ ′,C′〉 with names ñ.
A state σ keeps track of the capabilities achieved by a thread in a session, and it is formally defined as
set of maps (t,k) 7→ X . We use standard state manipulation functions, including lookup (σ(t,k)) and
update (σ [σ ′]). The exchange function [[X ;Y]]Z returns (Y\X)∪Z if X ⊆ Z and Z otherwise. Actions
are defined as λ ::= {τ,η ,λ@p}, where η denotes interactions, τ represents an internal computation,
and λ@p refers to the thread p performing action λ . Relation e@p ↓ v describes the evaluation of a
expression e (in p) to a value v.
Because of the introduction of quality predicates, a move from η ; C into C might leave some variables
in η without proper values, as the participants involved were not available. We draw inspiration from

4 Type-checking Availability in Choreographic Programming

η = &q(t1[A1]{X1;Y1}.e1, . . . , t j[A j]{X j;Y j}.e j)9> tB[B]{XB;YB} : x : 〈k,op〉 ei@ti ↓ vi
Xi ⊆ σ(ti,k) σ ′ = σ [(ti,k) 7→ [[Xi;Yi]](σ(ti,k))] i∈{1... j}

〈σ ,η ; C〉 (ti,k) : Xi::Yi−−−−−−−→→
〈
σ ′,
(
&q(t1[A1]{X1;Y1}.e1, . . . , ti[Ai].some(vi), . . . , t j[A j]{X j;Y j}.e j)9> tB[B]{XB;YB} : x : 〈k,op〉

)
; C
〉

p.e ::ff [] p.some(v) ::tt [(p,some(v))]
sc1 ::t1 θ1 . . . scn ::tn θn

&q(sc1, . . . ,scn) ::q(t1,...,tn) θ1 ◦ . . .◦θn

Figure 2: (2a) effects, and (2b) binding testing rules

η = ˜tr[A]{Yr} start ˜ts[B]{Ys} : a(k) σ ′ = [(ti,k) 7→ Yi]
|t̃r |+|t̃s|
i=1 ñ = t̃s,{k} ñ # m̃

(νm̃) 〈σ ,η ; C〉 η−→ (νm̃, ñ) 〈σ [σ ′],C〉
Init

J ⊆ t̃r q(J) ∀i∈{A}∪J : Xi ⊆ σ(ti,k)∧σ ′(ti,k) = [[Xi;Yi]](σ(ti,k)) ∀i∈t̃r : θ(xi) =

{
some(v) i ∈ J
none otherwise

e@tA ↓ v

(νm̃)
〈

σ ,
(

tA[A]{XA;YA}.e9> &q(˜tr[Br]{Xr;Yr} : xr) : k
)

; C
〉

θ(η)−−−→ (νm̃) 〈σ [σ ′],θ(C)〉
Bcast

〈σ ,η ; C〉 ξ−→→ 〈σ ′,η ′; C〉 η ′ ::ff θ

(νm̃) 〈σ ,η ; C 〉 τ−→ (νm̃) 〈σ ′,η ′; C〉
RedD

〈σ ,η ; C〉 ξ−→→ 〈σ ′,η ′; C〉 η ′ ::tt θ

(νm̃) 〈σ ,η ; C〉 θ(η ′)−−−→ (νm̃)
〈
σ ′,C[op(θ)/x@t j+1]

〉 RedE

Figure 3: SOS for GCq (excerpt): η in (BCAST), (REDD) and (REDE) is defined as in (INIT).

[10], introducing effect rules describing how the evaluation of an expression in a reduce operation affects
interactions. The relation−→→ (Figure 2a) describes how evaluations are partially applied without affecting
waiting threads. Label ξ records the substitutions of atomic formulae in each thread. We distinguish
between data and optional data, much like the use of option data types in programming languages like
Standard ML [6]. In the syntax we use terms t to denote data and expressions e to denote optional data;
in particular, the expression some(t) signals the presence of some data t and none the absence of data.
Finally, given φ ∈ {tt,ff}, the relation β ::φ θ tracks whether all required substitutions in β have been
performed, as well as the values used θ . Binder β is defined in terms of partially evaluated outputs c:

sc ::= p.e | p.some(v) c ::= &q(sc1, . . . ,scn)

The rules specifying β ::φ θ are presented in Figure 2b. A composition of evaluations θ1 ◦ θ2(x) is
defined as θ1 ◦ θ2(x) ::= θ1(θ2(x)), and q(t1, . . . , tn) =

∧
i∈1≤i≤n ti if q = ∀, q(t1, . . . , tn) =

∨
i∈1≤i≤n ti if

q = ∃, and possible combinations therein.

We now have all the ingredients to understand the semantics of GCq. The set of transition rules in λ−→ is
defined as the minimum relation on names, states, and choreographies satisfying the rules in Figure 7. We
give some intuitions on the most representative ones. We use the shorthand notation A # B to denote set
disjointness, A∩B = /0. Rule (INIT) models initial interactions: state σ is updated to account for the new
threads in the session, updating the set of used names in the reductum. Rule (BCAST) models broadcast:
given an expression evaluated at the sender, one needs to check that there are enough receivers ready to
get a message (q(J)). The result will: 1. update the current state with the new states of each participant
engaged in the broadcast, and 2. apply the partial substitution θ to the continuation C. The behaviour of
a reduce operation is described using rules (REDD) and (REDE): each sender ti evaluates an expression ei,
generating an effect in the overall interaction. If all required substitutions have been performed, then one

H.A. López, F. Nielson & H.R. Nielson 5

can proceed by applying evaluating the operator to the set of received values, binding variable x to its
results and proceeding with the continuation, otherwise the choreography will wait until further inputs
are bound, (i.e.: the continuation is delayed).
In contrast to previous works in multiparty sessions (e.g. [3]), we present an early semantics: it allows for
transitions to match with distinct moves, depending on which participants are available first. The choice
is motivated from our area of study. In CPSs, progress cannot rely on the availability of all components,
but rather on a subset of them. CPS also motivates the asymmetry between broadcast and reduce: while
a broadcast is a non-blocking operation that fires as long as enough receivers are ready to be engaged, a
reduce is a blocking operation, and will delay the transition until there is enough senders.

Definition 2.2 (Deadlock Freedom). C is deadlock-free if ∃C′,σ ′,λ s.t. 〈σ ,C〉 λ−→ 〈σ ′,C′〉, for all σ .

3 Type-checking progress

One of the challenges regarding the use of partial collective operations concerns the possibility of getting
into runs with locking states. Consider a variant of Example 1.1 with q1 = ∃ and q2 = ∀. Such a choice
may lead to blocked configurations. The system may block, since the collective selection in line (2) only
requires one receiver to be engaged, while the reduce operator in line (3) requires all senders to be ready.
One can also reach a blocking situation if the participant dependencies among interactive behaviour are
not preserved. For instance, by replacing Line (3) in the example with:

&∃(t1{Y1;Z1}.“1◦”, t3{Y3;Z3}.“5◦”)9> tm{Ym;Zm} : xm : 〈k,avg〉; 0 (3.1)

The choreography will block if q1 = ∃, as the choice operator in line (2) can execute a communication
over t2, blocking the reduce in the next step.
We introduce a type system to ensure progress on variable availability conditions. A judgment is written
as Ψ ` C, where Ψ is a formula in intutionistic linear logic (ILL) [5]. The type environment Ψ is
formed by formulae in ILL. Intuitively, Ψ `C is read as the formulae in Ψ describes the program point
immediately before C. Ψ can take the following shapes: Ψ ::= tt | p : k [A]BX |Ψ⊗Ψ |Ψ⊕Ψ |Ψ (
Ψ | ∃x.Ψ, where p : k [A]BX is an ownership type, asserting that p behaves as the role A in session k
with atomic formula X , and the other operators are standard ILL quantifiers and connectives. Moreover,
we require Ψ to be formulae free of linear implications in Ψ `C 1.

Figure 4 presents the typing rules GCq (see Appendix A.4 for its full definition). Rule (TINIT) types

new sessions: Ψ is extended with function init(˜tp[A]{X},k), which returns a set of ownership types
{tq : k [B]BX | tq[B] ∈˜tp[A]}. The condition {t̃s,k} # (T(Ψ)∪K(Ψ)) ensure that new names do not exist
neither in the threads nor in the used keys in Ψ. The typing rules for broadcast, reduce and selection are
analogous, so we focus our explanation in (TBCAST). Here we abuse of the notation, writing Ψ ` C to
denote type checking, and Ψ ` ψ to denote formula entailment. A broadcast is typable if Ψ contains the
capabilities for the sender and a subset of the receivers. Because of the variable availability conditions,
we lesser the typing requirements governing all receivers, to typing all the subsets of receivers s.t. the
evaluation of the quality predicate holds. Formula Ψ must contain subformulae for senders, receivers and
concurrent sessions. Finally, the type of the continuation will consume the resources required to type the
broadcast, updating them with new capabilities for the threads engaged.
Example 3.1. In Example 1.1, tt `C if q1 = q2 = ∀. In the case q1 = ∃,q2 = ∀, the same typing fails.
Similarly, tt 6`C if q1 = ∃ , for the variant of the example updated with eq. 3.1.

1We do, however, use the full set of operators when performing proof search

6 Type-checking Availability in Choreographic Programming

Ψ⊗ init(˜tr[A]{Yr}, ˜ts[B]{Ys},k) `C {t̃s,k} # (T(Ψ)∪K(Ψ))

Ψ ` ˜tr[Ar]{Yr} start ˜ts[Br]{Ys} : a(k); C
Tinit

Ψ ` 0
Tinact

∀J. s.t.(J ⊆ B̃ ∧ q(J)) Ψ =
⊗

j∈J(ψ j)⊗ψA⊗Ψ′ φ = tA : k [A]BXA
⊗

j∈J(t j : k
[
B j
]
BX j)

φ ′ = tA : k [A]BYA
⊗

j∈J
(
t j : k

[
B j
]
BY j

) (⊗
j∈J ψ j

)
⊗ (φ (φ ′) ` φ ′ (tA : k [A]BYA)

⊗
j∈J
(
t j : k

[
B j
]
BY j

)
⊗Ψ′ `C

Ψ `
(

tA[A]{XA;YA}.e9> &q(˜tr[Br]{Xr;Yr} : xr) : k
)

; C
Tbcast

∀J. s.t.(J ⊆ Ã ∧ q(J)) Ψ =
⊗

j∈J(ψ j)⊗ψB⊗Ψ′ φ = tB : k [B]BXB
⊗

j∈J(t j : k
[
A j
]
BX j)

φ ′ = tB : k [B]BYB
⊗

j∈J
(
t j : k

[
A j
]
BY j

) (⊗
j∈J ψ j

)
⊗ (φ (φ ′) ` φ ′ (tB : k [B]BYB)

⊗
j∈J
(
t j : k

[
A j
]
BY j

)
⊗Ψ′ `C

Ψ `
(

&q(˜tr[Ar]{Xr;Yr}.er)9> tB[B]{XB;YB} : x : 〈k,op〉
)

; C
Tred

Figure 4: GCq: Type checking rules (excerpt)

A type preservation theorem must consider the interplay between the state and formulae in Ψ. We
write σ |= Ψ to say that the tuples in σ entail the formulae in Ψ.

Theorem 3.2 (Type Preservation). If (νm̃) 〈σ ,C〉 λ−→ (ν ñ) 〈σ ′,C′〉, σ |= Ψ, and Ψ `C, then ∃Ψ′.Ψ′ `
C′ and σ ′ |= Ψ′.
Theorem 3.3 (Progress). If Ψ `C, σ |= Ψ and C 6≡ 0, then C is deadlock-free.

4 Final Remarks

We have presented a language for the description of protocols with variable availability conditions, as
well as a type system to ensure its progress. The contributions here developed constitute the first step
towards the development of a methodology for the safe development of communication protocols in CPS.
The analysis presented is orthogonal to existing type systems for choreographies (c.f. session types [2].)
The integration of our analysis techniques and generation of distributed implementations (e.g. EndPoint
Projection [1]) constitutes our next research step.
Our most immediate plans include the modification of the type theory to capture a large set of assyn-
chronous behaviour (c.f. Rule bC|ASYNCHe in [2]) and recursion. Our types are computationally expen-
sive, because for each global communication primitive one must perform the analysis on each subset of
participants. The situation will be critical once recursion is considered. We believe that the efficiency
of type checking can be improved by modifying the theory so it generates one formulae for all subsets.
Finally, we believe that many of the atomic formulae can be automatically inferred, which could greatly
simplify the models here presented.

References
[1] M. Carbone, K. Honda & N. Yoshida (2007): Structured communication-centred programming for web ser-

vices. In: ESOP, pp. 2–17.
[2] M. Carbone & F. Montesi (2013): Deadlock-freedom-by-design: Multiparty Asynchronous Global Program-

ming. In: POPL, pp. 263–274, doi:10.1145/2429069.2429101.
[3] G. Castagna, M. Dezani-Ciancaglini & L. Padovani (2011): On global types and multi-party sessions. In:

FORTE, Springer, pp. 1–28.
[4] P.M. Denielou & N. Yoshida (2012): Multiparty Session Types Meet Communicating Automata. In: ESOP,

7211, Springer Science & Business Media, p. 194.

http://dx.doi.org/10.1145/2429069.2429101

H.A. López, F. Nielson & H.R. Nielson 7

T(η) # T(η ′)
η ; (η ′; C)'C η ′; (η ; C)

t[A] /∈ T(η)

e@t[A]?η ; C1 : η ; C2 'C η ; e@t[A]?C1 : C2

t1[A] 6= t2[B]
e@t1[A]?(e′@q?C1 : C2) : (e′@t2[B]?C′1 : C′2)'C e′@t2[B]?(e@t1[A]?C1 : C′1) : (e@t1[A]?C2 : C′2)

Figure 5: Swap congruence relation, 'C

[5] Jean-Yves Girard (1987): Linear Logic. Theor. Comp. Sci. 50, pp. 1–102.
[6] R. Harper (2013): Programming in Standard ML. Working Draft. Available at http://www.cs.cmu.edu/

~rwh/smlbook/book.pdf.
[7] H. Hüttel & N. Pratas (2015): Broadcast and aggregation in BBC. In Simon Gay & Jade Alglave, editors:

PLACES’15, pp. 51–62.
[8] D. Kouzapas, R. Gutkovas & S. J. Gay (2014): Session types for broadcasting. In Alastair F. Donaldson &

Vasco T. Vasconcelos, editors: PLACES, EPTCS 155, Grenoble, France, pp. 25–31.
[9] H. A. López, E. R. B. Marques, F. Martins, N. Ng, C. Santos, V. T. Vasconcelos & N. Yoshida

(2015): Protocol-based verification of message-passing parallel programs. In: OOPSLA, pp. 280–298,
doi:10.1145/2814270.2814302.

[10] H. R. Nielson, F. Nielson & R. Vigo (2013): A calculus for quality. In: FACS, Springer, pp. 188–204.

A Additional Definitions

A.1 Structural Congruence

Definition A.1 (Structural Congruence). Choreographies are considered modulo structural congru-
ence, defined as the least congruence relation on C supporting α−renaming, such that (C,0,+) is an
abelian monoid.

A.2 Swap Congruence

Let T(C) the set of threads in C, defined inductively as T(η ; C)
def
= T(η)∪T(C), and T(η)

def
=
⋃

i={1.. j} ti
if η = t1[A1].e9> &q(t1[A2] : x2, . . . , t j[A j] : x j) : k (similarly for (START), (REDUCE) and (CHOICE), and stan-
dardly for the other process constructs in C). The swapping congruence rules are presented in Figure 5.

A.3 Operational Semantics

Definition A.2 (Store Manipulation). The rules in Figure 6 define store manipulation operations, in-
cluding store update (σ [σ ′]), and lookup (σ(t,k)) :

Y =

{
X (t,k,X) ∈ σ

/0 otherwise
σ(t,k) = Y

σ # σ ′

σ [σ ′] = σ ,σ ′
δ = {(t,k,X) | (t,k,X) ∈ σ ∧ (t,k,Y) ∈ σ ′}

σ [σ ′] = (σ\δ),σ ′

Figure 6: Store update rules

http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://dx.doi.org/10.1145/2814270.2814302

8 Type-checking Availability in Choreographic Programming

σ ′ = [(ti,k) 7→ Yi]
|t̃r |+|t̃s|
i=1 ñ = t̃s,{k} ñ # m̃

(νm̃)
〈

σ , ˜tr[A]{Yr} start ˜ts[B]{Ys} : a(k); C
〉 t̃r [A] start t̃s[B]:a(k)−−−−−−−−−−−→ (νm̃, ñ) 〈σ [σ ′],C〉

Init
(νm̃) 〈σ ,Ci〉

λ−→ (νm̃) 〈σ ′,C′〉 i∈{1,2}

(νm̃) 〈σ ,C1 +C2〉
λ−→ (νm̃) 〈σ ′,C′〉

Sum

J ⊆ t̃r q(J) ∀i∈{A}∪J : Xi ⊆ σ(ti,k)∧σ ′(ti,k) = [[Xi;Yi]](σ(ti,k)) e@tA ↓ v ∀i∈t̃r : θ(xi) =

{
some(v) i ∈ J
none otherwise

(νm̃)
〈

σ ,
(

tA[A]{XA,YA}.e9> &q(˜tr[Br]{Xr;Yr} : xr) : k
)

; C
〉

θ(tA[A]{XA,YA}.e9>&q(˜tr [Br]{Xr ;Yr}:xr):k)−−−−−−−−−−−−−−−−−−−−−−−−→ (νm̃) 〈σ [σ ′],θ(C)〉
Bcast

J ⊆ t̃r q(J) ∀i∈{A}∪J : Xi ⊆ σ(ti,k)∧σ ′(ti,k) = [[Xi;Yi]](σ(ti,k))

(νm̃)
〈

σ ,
(

tA[A]{XA;YA}9> &q(˜tr[Br]{Xr;Yr}) : k[lh]
)

; C
〉 tA[A]{XA;YA}9>&q(˜tr [Br]{Xr ;Yr}):k[lh]−−−−−−−−−−−−−−−−−−−−−→ (νm̃) 〈σ [σ ′],C〉

Sel

η = &q(˜tr[Ar]{Xr;Yr}.er)9> tB[B]{XB;YB} : x : 〈k,op〉

〈σ ,η ; C〉 ξ−→→ 〈σ ′,η ′; C〉 η ′ ::ff θ

(νm̃) 〈σ ,η ; C 〉 τ−→ (νm̃) 〈σ ′,η ′; C〉
RedD

η = &q(˜tr[Ar]{Xr;Yr}.er)9> tB[B]{XB;YB} : x : 〈k,op〉

〈σ ,η ; C〉 ξ−→→ 〈σ ′,η ′; C〉 η ′ ::tt θ

(νm̃) 〈σ ,η ; C〉 θ(η ′)−−−→ (νm̃)
〈
σ ′,C[op(θ)/x@t j+1]

〉 RedE

CRC′ (νm̃) 〈σ ,C′〉 λ−→ (ν ñ) 〈σ ′,C′′〉 C′′RC′′′ R ∈ {≡,'C}

(νm̃) 〈σ ,C〉 λ−→ (ν ñ) 〈σ ′,C′′′〉
Cong

i = 1 if e@t ↓ tt, i = 2 otherwise

(νm̃) 〈σ ,e@t?C1 : C2〉
τ@t−−→ (νm̃) 〈σ ,Ci〉

If

Figure 7: GCq: Operational Semantics - Complete rules

Figure 7 presents the complete operational semantics for GCq.

A.4 Type System

Figure 8 presents the complete type system for GCq.
Definition A.3 (State satisfaction). The entailment relation between a state σ and a formula ψ (written
σ |= ψ) is inductively defined as follows:

σ |= tt ⇐⇒ σ is defined

σ |= t : k [A]BX ⇐⇒ (t,k,X) ∈ σ

σ |= ψ1⊗ψ2 ⇐⇒ σ = σ
′,σ ′′ | σ ′ |= ψ1 ∧ σ

′′ |= ψ2

σ |= ψ1⊕ψ2 ⇐⇒ σ |= ψ1 or σ |= ψ2

σ |= ψ\δ ⇐⇒∃σ ′ s.t. σ
′ |= ψ ∧ σ = σ

′\δ
σ |= ∃x.ψ ⇐⇒ σ |= ψ[w/x] (for some appropriate w)

B Proofs

B.1 Results related to states

Lemma B.1 (Validity: States). If σ |= Ψ, then Ψ : formula and σ : state.

Proof. By rule induction on the first hypothesis.

Lemma B.2 (Weakening: States). If σ |= Ψ, then σ ,(t [A] ,k,X) |= Ψ⊗ t : k [A]BX

Proof. It follows by induction on the hypothesis.

We write (t,k,X) ∈ sf(Ψ) when t : k [A]BX is a subformulae of Ψ for any A.

Lemma B.3 (Strengthening: States). If σ ,(t[A],k,X) |= Ψ and t : k [A]BX /∈ sf(Ψ), then σ |= Ψ.

H.A. López, F. Nielson & H.R. Nielson 9

Choregraphy Formation (Ψ `C),

Ψ⊗ init(˜tr[Ar]{Yr}, ˜ts[Br]{Ys},k) `C {t̃s,k} # (T(Ψ)∪K(Ψ))

Ψ ` ˜tr[Ar]{Yr} start ˜ts[Bs]{Ys} : a(k); C
Tinit

Ψ `C Ψ′ `C′

Ψ⊕Ψ′ `C+C′
Tsum

∀J. s.t.(J ⊆ B̃ ∧ q(J)) Ψ =
⊗

j∈J(ψ j)⊗ (ψA)⊗Ψ′ φ = tA : k [A]BXA
⊗

j∈J(t j : k
[
B j
]
BX j)

φ ′ = tA : k [A]BYA
⊗

j∈J
(
t j : k

[
B j
]
BY j

) (⊗
j∈J ψ j

)
⊗ (φ (φ ′) ` φ ′ (tA : k [A]BYA)

⊗
j∈J
(
t j : k

[
B j
]
BY j

)
⊗Ψ′ `C

Ψ `
(

tA[A]{XA;YA}.e9> &q(˜tr[Br]{Xr;Yr} : xr) : k
)

; C
Tbcast

∀J. s.t.(J ⊆ Ã ∧ q(J)) Ψ =
⊗

j∈J(ψ j)⊗ (ψB)⊗Ψ′ φ = tB : k [B]BXB
⊗

j∈J(t j : k
[
A j
]
BX j)

φ ′ = tB : k [B]BYB
⊗

j∈J
(
t j : k

[
A j
]
BY j

) (⊗
j∈J ψ j

)
⊗ (φ (φ ′) ` φ ′ (tB : k [B]BYB)

⊗
j∈J
(
t j : k

[
A j
]
BY j

)
⊗Ψ′ `C

Ψ `
(

&q(˜tr[Ar]{Xr;Yr}.er)9> tB[B]{XB;YB} : x : 〈k,op〉
)

; C
Tred

((same as (TBCAST)))

Ψ `
(

t1[A]{XA;YA}9> &q(˜tr[Br]{Xr;Yr}) : k[lh]
)

; C
Tsel

Ψ ` 0
Tinact

Ψ `C1 Ψ `C2

Ψ ` e@t?C1 : C2
Tcond

State Formation (σ : state),

/0 : state
TS1

σ : state σ(t[A],k) = /0 X ∈ dom(Σ)

σ ,(t[A],k,X) : state
TS2

σ : state (t[A],k,X) ∈ σ Y ∈ dom(Σ)

[[X ;Y]](σ(t,k)) : state
TS3

σ : state δ : state
σ\δ : state

TS4

Formulae Formation (Ψ : formula),

tt : formula
TF1

t : k [A]BX : formula
TF2

ψ : formula ψ ′ : formula ◦ ∈ {⊗,⊕}
ψ ◦ψ ′ : formula

TF3
ψ : formula δ : state

ψ\δ : formula
TF4

Figure 8: GCq: Type checking - Complete rules

Proof. It follows by induction on the first hypothesis.

Lemma B.4 (Update: States). If σ |= Ψ and σ ′ |= Ψ′, then σ [σ ′] |= (Ψ\δ)⊗Ψ′, where δ = {(t,k,X) | (t,k,X)∈
σ ∧ (t,k,Y) ∈ σ ′}.

Proof. It follows directly from the hypotheses and definitions A.2 and A.3.

B.2 Results related to choreographies

Lemma B.5 (Weakening: choreographies). Let ψ : formula. If Ψ `C, then Ψ⊗ψ `C.

Proof. By rule induction on the hypothesis.

Lemma B.6 (Strengthening: choreographies). If Ψ⊗ t : k [A]BX `C and X /∈ fform(C), then Ψ `C.

Proof. By rule induction on the first hypothesis.

Lemma B.7 (Substitution). Let t be a term, if Ψ `C, then Ψ `C[t/x].

Proof. By rule induction on the first hypothesis. Note that x /∈Ψ.

Lemma B.8 (Subject Congruence). If C ≡C′ and Ψ `C, then Ψ `C′.

Proof. It proceeds by induction on the depth of the first premise.

Lemma B.9 (Inversion Lemma). Let Ψ `C then either:

10 Type-checking Availability in Choreographic Programming

• C = η ; C′, and:

– η = ˜tr[Ar]{Yr} start ˜ts[Bs]{Ys} : a(k) and Ψ⊗ init(˜tr[Ar]{Yr}, ˜ts[Br]{Ys},k) `C′, and {t̃s,k}#(T(Ψ)∪K(Ψ)), or

– η = tA[A]{XA;YA}.e9> &q(˜tr[Br]{Xr;Yr} : xr) : k and ∀J. s.t.(J ⊆ B̃ ∧ q(J)), Ψ =
⊗

j∈J(ψ j)⊗ (ψA)⊗Ψ′, and
φ = tA : k [A]BXA

⊗
j∈J(t j : k

[
B j
]
BX j), and φ ′ = tA : k [A]BYA

⊗
j∈J
(
t j : k

[
B j
]
BY j

)
, and

(⊗
j∈J ψ j

)
⊗(φ (

φ ′) ` φ ′, and (tA : k [A]BYA)
⊗

j∈J
(
t j : k

[
B j
]
BY j

)
⊗Ψ′ `C′, or

– η = &q(˜tr[Ar]{Xr;Yr}.er)9> tB[B]{XB;YB} : x : 〈k,op〉, and ∀J. s.t.(J ⊆ Ã ∧ q(J)), and Ψ =
⊗

j∈J(ψ j)⊗
(ψB)⊗Ψ′, and φ = tB : k [B]BXB

⊗
j∈J(t j : k

[
A j
]
BX j), and φ ′ = tB : k [B]BYB

⊗
j∈J
(
t j : k

[
A j
]
BY j

)
, and(⊗

j∈J ψ j
)
⊗ (φ (φ ′) ` φ ′, and (tB : k [B]BYB)

⊗
j∈J
(
t j : k

[
A j
]
BY j

)
⊗Ψ′ `C′, or

– η = tA[A]{XA;YA}.e9> &q(˜tr[Br]{Xr;Yr} : xr) : k and ∀J. s.t.(J ⊆ B̃ ∧ q(J)), Ψ =
⊗

j∈J(ψ j)⊗ (ψA)⊗Ψ′, and
φ = tA : k [A]BXA

⊗
j∈J(t j : k

[
B j
]
BX j), and φ ′ = tA : k [A]BYA

⊗
j∈J
(
t j : k

[
B j
]
BY j

)
, and

(⊗
j∈J ψ j

)
⊗(φ (

φ ′) ` φ ′, and (tA : k [A]BYA)
⊗

j∈J
(
t j : k

[
B j
]
BY j

)
⊗Ψ′ `C′, or

• C =C′+C′′, and Ψ = Ψ′⊕Ψ′, and Ψ′ `C′ and Ψ′′ `C′′, or

• C = e@t?C1 : C2, and Ψ `C1, and Ψ `C2, or

• C = 0.

Proof. By case analysis on the type formation rules.

Lemma B.10 (Subject Swap). If C 'C C′ and Ψ `C, then Ψ `C′.

Proof. It proceeds by induction on the depth of the first premise. Most of the cases are straightforward
except η ; (η ′; C)'C η ′; (η ; C), which requires the application of Lemma B.9 and case analysis.

Let ξ (Ψ) the update function in Ψ, defined as [[X ;Y]](t : k [A]BX) if Ψ = t : k [A]BX and inductively
for any other case.

Lemma B.11 (Subject Effect). Let ξ = (t,k) : X :: Y , if 〈σ ,η ; C〉 ξ−→→ 〈σ ′,η ′; C〉, Ψ ` η ; C and σ |= Ψ,
then ∃Ψ′ = ξ (Ψ). Ψ′ ` η ′; C, and σ ′ |= Ψ′.

Proof. It follows by rule induction on the first hypothesis.

Theorem 3.2 (Type Preservation). Statement on page 6.

Proof. It follows by rule induction on the first hypothesis. We have eight cases.
Case (INIT) rule: Standard inversion/formation rules. It requires the state update lemma (Lemma B.4).
Case (BCAST),(SEL) rules: Standard Inversion/formation rules. Process typing requires substituion (Lemma
B.7) and state typing require state update (Lemma B.4).
Case (REDD), (REDE) rules: State and process typing of the transition rely on Lemma B.11. Moreover,
process typing requires the use of Lemma B.7.
Case (CONG) rule: One case for each congruence relation. ≡ requires subject congruence (Lemma B.8),
and 'C requires subject swap (Lemma B.10).
Case (IF),(SUM) rules: they follow a standard induction.

Theorem 3.3 (Progress). Statement on page 6.

Proof. Proof by contradiction. Let us assume that Ψ ` C, σ |= Ψ and C 6≡ 0 and (νm̃) 〈σ ,C〉 6 λ−→. We
proceed by case analysis on the structure of C to show that such C does not exists.

	Introduction
	The Global Quality Calculus (GCq)
	Semantics

	Type-checking progress
	Final Remarks
	Additional Definitions
	Structural Congruence
	Swap Congruence
	Operational Semantics
	Type System

	Proofs
	Results related to states
	Results related to choreographies

