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ABSTRACT
Energy Systems are facing a significant change in the way their
management and control is conceived. With the introduction of
distributed and renewable energy based resources a shift to a more
distributed operation paradigm is emerging, overturning the conven-
tional top-down design and operation principles. This shift creates a
demand for distributed and transactive control systems to facilitate a
more adaptive and efficient power networks. One key challenge here
is to ensure the required reliability of distributed control systems. By
focusing on the communication aspect required for the coordination
of distributed resources we build on the notion of Quality Chore-
ographies, a formal model for the development of failure-aware
distributed systems. In this paper we discuss how quality choreogra-
phies respond to the needs presented by distributed and transactive
control systems. We demonstrate their applicability by modelling
the Bully Algorithm, one of the de-facto election algorithms used in
the coordination of Distributed Control Systems.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]; D.3.2 [Language Clas-
sifications]: Concurrent, distributed and parallel languages; B.8.1
[Reliability, Testing, and Fault-Tolerance]

General Terms
Languages, Verification

Keywords
Choreographic Programming, Failure-awareness, Session Types,
Programming Languages, Concurrency Theory

1. INTRODUCTION
The operation and control of energy infrastructures such as elec-

tric power systems is becoming increasingly dependent on infor-
mation technology. With the “Smart Grid” development a cost
effective system operation and the integration of renewable energy
sources is facilitated, often by communication-centred and transac-
tive applications of distributed control systems. Due to their better
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performance and adaptability, these are aimed at complementing
and replacing existing centralised and decentralised systems. How-
ever, electric power networks are critical infrastructures with a long
tradition in ensuring reliable operation in part by avoiding reliance
on communication in the design of control systems. The deployment
of communication-centred approaches is therefore facing adoption
barriers: distributed communication-centred solutions can only be
cost-effective if evidence of reliability, availability, and security of
the underlying communications can be given. Similar conditions
apply in other energy infrastructure systems such as heat-supply
networks or gas pipelines. In more general terms, Cyber-Physical
Systems (CPS) are heterogeneous systems where availability and
reliability requirements are crucial. Ensuring available and reliable
CPS is hard, since in many cases the systems operate in adverse
conditions (e.g.: with energy sources located in difficult access con-
ditions), or are critical for operation, such that correction at runtime
is not possible. Furthermore, the development of coordination algo-
rithms for distributed control systems (herewith DCS) is error-prone:
each component develops its own part of the code, small changes in
the order of communications implemented in a component might
lead the system to a deadlock situation, or to executions that deviate
from the intended ones; finally, each component must be tested
against the whole infrastructure. Apart from the costs incurred in
this approach, testing cannot not guarantee the absence of errors.

One key challenge in the communications aspect of such Cyber-
Physical Distributed Control Systems (CP-DCS), is to ensure that
CP-DCS comply with the appropriate application-specific quality of
service requirements and reliability constraints prior to deployment.
Such constraints include that communication among components
do not block (deadlock-freedom), or that implementations adhere to
a specific protocol (protocol-fidelity). In this paper we report how
this challenge from a new generation of electrical distributed control
systems can be mitigated by using techniques coming from formal
modelling of distributed systems. In particular, this article presents
how choreographic programming may serve as a methodology for
the development of correct-by-design distributed control systems.

Our Contribution. This paper reports a multidisciplinary effort
between electrical engineering and formal models of software de-
velopment. First, the application and structure of distributed control
systems in Smart Grids is discussed and a recently published tax-
onomy is reviewed. The development of programming-language
support techniques is motivated from the needs of distributed control
systems. We explore how a variant of choreographic programming
and the theory of endpoint projections [8] can map to the require-
ments present in CP-DCS. As a case study, we present how the
selected variant of choreographic programming (Quality Chore-
ographies [29]), can provide support for the specification of the
Bully leader election algorithm [13], which is used as coordina-



tion algorithm in CP-DCS. This paper is organised as follows: In
Section 2 the requirements and different varieties of CP-DCS are
presented. Section 3 introduces quality choreographies, as well as
the development methodology that permits the transformation from
choreographies to failure-aware distributed components. Section
4 discusses how the choreographies capture the requirements of
CP-DCS and illustrates the approach presenting a choreographic
specification of the Bully algorithm. Finally, Section 5 concludes.

2. DISTRIBUTED CONTROL SYSTEMS IN
SMART GRIDS

Conventional power systems utilise a combination of hierarchi-
cally layered centralised, communication-centred, and decentralised,
non-communication-centred, control strategies [26]. These cen-
tralised and decentralised control strategies have complementary
properties [14], which together meet the requirements of conven-
tional power system operation. However, distributed control systems
are increasingly proven to offer utility beyond these traditional con-
trol concepts [5]. With the increasing availability of distributed
energy resources (DER), which have the ability to change roles as
providers of power system services and energy, CP-DCS architec-
tures which are scalable, composable, and transactive are becoming
unavoidable [14]. In this view, transactive energy [12] is an increas-
ingly adopted paradigm enabling distributed energy trading and
system management that involves DER as active participants in grid
management. Transactive control [20, 23] refers to the extension of
transactive energy to the management of real-time control systems.

A taxonomy of control architecture patterns presented in [14],
defines the following major categories:

• Centralised. One central control element collecting infor-
mation from remote sites and deciding set-points for remote
actuation.

• (Dec)entralised. A central (common) control objective is
decentralised to independent local control elements; the local
control elements only use local measurements and actuators.

• (D)istributed. Multiple control elements organised in a com-
mon architecture jointly responsible decomposing objectives
and deciding actuation.

The main distinctive element between these categories is in their
allocation of control responsibility (central, local, shared), which
implies that successful control will depend in different degrees on
the availability of communication links among control elements.
It is possible to combine architectural patterns as separate Control
Layers, which are functional levels in a layered control architecture,
representing an aspect of the overall control problem at a particular
time scale or abstraction level of the physical system. The driver
for layering different control patterns is typically the need to meet
several design criteria that cannot be achieved in a desirable per-
formance by a single integrated algorithm. The layering is thereby
not necessarily driven by a hierarchical formulation of the control
problem, but may be simply addressing another aspect of the control
problem, thus meeting other design constraints.

Reliable, communication-independent, operation is achieved in
conventional centralised/decentralised control architecture, by means
of a decentralised control strategy, i.e. autonomous local control
elements with a clearly defined control behaviour. Centralised con-
trol system reliability is then typically improved by redundancy of
control centres, communication and computational infrastructure.
Instead of active coordination, conflict of control actions between
centralised and decentralised control layers is avoided by means of a

model-based decomposition of control objectives [17]. Distributed
architecture offers the advantage of flexibility in meeting design
objectives, considering trade-offs, such as privacy vs. fairness, or
optimality vs. scalability. One of the trade-offs to be considered
is the increased dependency on communication that comes with
distribution. The communication patterns of CP-DCS are diverse
which is also expressed in the further refined categories of [14]:
D-(V)ertical. Decisions of one control element are imposed on other
control element, so that a hierarchy among the control elements
exists.

• D-V-(D)eterminate: control decisions are based on hierarchi-
cal information collection and central decision-making.

• D-V-(I)terative: control decisions are in an iterative negoti-
ation process facilitated by a central clearing instance; this
central instance is responsible for concluding the negotiation
and committing the control decisions.

D-(H)orizontal. Different from D-V, the responsibilities of control
elements in this category are symmetrical, and the functions being
executed in the control elements are similar.

• D-H-(C)entralized shared processing, a single entity is re-
quired to relay information among control elements as an es-
sential part of the control algorithm; it does however not com-
mit participants to a control decision; examples are publish-
aggregate-subscribe patterns or blackboard architectures.

• D-H-(P)2P represents fully distributed Peer-to-peer (P2P)
control architecture; here the roles of control elements are not
fixed and may be re-allocated based on capabilities.

This range of coordination and implied communication require-
ments leads to a rather indirect relation between communication link
reliability and control functionality: whereas a D-V-D pattern can
be expected to have a similar response to communication failure as
a centralised pattern, in the D-H-P case communication failure will
affect system reliability at a comparable rate as component failure
in a decentralised pattern. The commonly assumed direct linkage
between communication failure and function failure thus does not
apply here. Yet, reliability dependency due to indirect linkage is not
typically qualified for smart grid applications [39, 38].

While formal methods have been applied to safety critical systems,
such as railway control systems [16], they are not commonly em-
plyed in distributed control. Modeling and analysis wrt. networked
and distributed control systems entails assessment of network prop-
erties [1, 38]. An applicable automation standard, IEC61499 [36]
includes provisions for code generation and testing based on func-
tion block specifications. However, formal methods are hardly used
as part of distributed control systems specifications in energy net-
works. Although terminology from different disciplines is likely
to overlap and conflict, we recognise that the above categorisation
is strongly linked to the communication patterns required within
the respective control layer. In the remainder of this contribution
we aim to exploit this linkage by focussing on providing reliable
communications for distributed control systems.

3. PROGRAMMING-LANGUAGE SUPPORT
FOR RELIABLE DCS

We advocate for a methodology for the rigorous development
of distributed control systems. In particular, we propose chore-
ographies [9, 10, 29] as a programming-language methodology
applicable for DCS. Choreographies are a high-level programming
model that describes the communication behaviour of a distributed



system. They can simplify the programmer’s life by providing a
way to describe a unique description of the sequence of interactions
required in the systems from a birds-eye perspective. Moreover,
choreographies are amenable to automated (static) verification, with
the advantage that verified choreographies will compile to reliable
code implementing the behaviour of each component in the dis-
tributed system.

3.1 Programming Language Requirements
Since their inception, a vast number of choreographical languages

have been proposed. The selection of which model to use will
depend on specific characteristics of the application domain. In the
case of Distributed Control Systems, we can rely on a language that
the communication behaviour of Cyber-Physical Systems [29]:

• Asynchrony. Control elements may be deployed in harsh
environmental conditions, such as arctic or marine locations.
Such conditions affect elements’ lifespan, increasing the prob-
ability of failure. An asynchronous control model permits to
cope with elements’ changing availability conditions.

• Self-Configuration. Changing availability conditions mean
that control units cannot fully rely on a centralised infras-
tructure. Instead, each control element must be able to adapt
according to availability changes, including the change of
roles and capabilities at runtime.

• Application-Centric Protocols. Control elements aim at ac-
complishing a common, universal goal, typically related to
maintaining an application-level quality of service (QoS). As
a result, the importance of a single control element is super-
seded by the fairness of the collection of elements involved,
where decisions are made from the aggregate data of control
elements, rather than the specific data coming from any of
them [35].

• Multicast Communication. One-to-many and many-to-one
communications rather than P2P message passing.

All of these characteristics also pertain to the CP-DCS applications
discussed in Section 2. In particular, the desired reliability charac-
teristics correspond to application-centric QoS requirements.

3.2 Choreographies
Works on verification of interaction protocols date back to the

works on sortings for the polyadic π-calculus [32], and later in [37,
18] (see [11] for a thorough overview). Here, interaction is seen at
a local level, featuring constructs for message passing, labelled se-
lection and delegation of responsibilities. A type discipline (session
types [18]) guarantees that components are engaged in interactions
in a structured and complementary way. That is, if the specification
of a protocol involves components sending and receiving informa-
tion, then the endpoints generated have a balance between their
input/output primitives, and their concurrent execution behaves ac-
cording to the specific order of interactions in the specification. In [7,
19], correspondences between global types (describing interactions
at a global –choreographical– level) and local types (describing in-
teractions of endpoints) have been studied. The Endpoint Projection
ensures that all and only the interaction behaviour described by the
global types is present in their endpoints. Choreographies for CPSs
require the combination of models of asynchronous, multiparty and
multiparty communications [10], as well as collective (many-to-one,
one-to-many) communications [4, 25, 28].

3.3 Generating Reliable Code
A methodology based on choreographies follows a top-down

approach. It can be summarised as follows:

1. Describe the communicating behaviour of a Distributed Con-
trol System in terms of a Choreography.

2. Verify that the produced choreography is well-typed with
respect to a session type.

3. Generate endpoint code for all involved participants.

In essence, the first step provides a skeleton of the communi-
cating behaviour of components in the system, similarly to other
specification models, such as UML’s interaction diagrams, Mes-
sage Sequence Charts or WS-CDL specifications [15, 22]. Con-
sidering the requirements placed in Section 3.1, we have opted
for Quality Choreographies [29] as the selected choreographic lan-
guage. Among others, quality choreographies model multiparty,
asynchronous communications, where component-based reliability
is relaxed, modelling the fact that some components can be unavail-
able at runtime. Even at this early stage, choreographies can benefit
from static verification techniques. For instance, failure-aware con-
siderations used in the description of a choreography might not be
able to be satisfied in collective communications, leading to chore-
ographies that, if implemented, will deadlock. A type discipline
will guarantee that the communication primitives used in a chore-
ographic specification can indeed be implemented with available
components.

Once generated a choreographic model, a transformation from
top-level specifications to abstract endpoints must be performed.
The theory of Multiparty Session Types (MPST) [19] provides a
formal ground to this transformation. In particular, the work in [31]
presents how specifications of quality choreographies paired with
(global) multiparty session types, can project to abstract endpoint
processes. Pairing Quality Choreographies with MPST is of vital im-
portance in order to generate endpoints that preserve the behaviour
described at top level. Reliability guarantees are expressed in terms
on the behaviours that implementations generated from a choreogra-
phy can exhibit. Also known as safety, reliability says that all the
execution paths of a CP-DCS preserve a safe (“good") behaviour in
the system. We list a non-exhaustive list of variants of safety that
apply to CP-DCS:

• Progress (or deadlock-freedom): The components in a CP-
DCS do not get stuck due to errors in the communication
protocol [10].

• Liveness: Each interaction described in the protocol eventu-
ally occurs [34].

• Protocol-fidelity: Once the choreography is projected onto
endpoints, the distributed execution of CP-DCS components
will describe all and only the behaviours described by the
original choreography [18].

• Availability-by-design: It describes failure-awareness con-
ditions in a protocol. Under a minimum set of available
components, the protocol is guaranteed to advance in its ex-
ecution [29]. This property subsumes deadlock-freedom, in
the sense that, while deadlock-freedom is a component-based
property that can be invalidated if one of the components stops
working, availability-by-design is a system-based property,
invalidated if not enough components can provide the global
availability guarantees required in the protocol.



• Fault-Tolerance: In the event that not enough replicated com-
ponents are available, the execution of a distributed system
can preserve its execution by reconfiguring components ac-
cording to new conditions.

While quality choreographies provide ways of describing failure-
aware protocols, guaranteeing availability-by-design, they do not
bring any kind of support when the minimum threshold of available
components is unreachable. As it is the case for many coordination
protocols for CP-DCS (including the Bully algorithm presented in
Section 4.2), the correct operation of a distributed system relies
on the assumption that such a minimum set is always available.
Fault tolerance for choreographies will imply that once we cannot
contact the minimum amount of required available components, an
exceptional protocol will take charge of reconfiguring the system in
such a way operational constraints are satisfied. To achieve this, the
language Quality Choreographies may require additional extensions,
among them Exceptional/Compensating behaviour [6], 2. Timeouts
[3, 30], and 3. Runtime Monitoring [2]. We will leave considerations
regarding extensions from failure awareness to fault tolerance for
future work.

4. CHOREOGRAPHING CP-DCS
We derive the application specific requirements that facilitate spec-

ification of reliable CP-DCS and illustrate some necessary choreog-
raphy language extensions on a case study.

4.1 Reliability of Distributed Control Systems
In physical infrastructures, the notion of reliability pertains the

physical functional requirements of electrical components, including
(local, decentralised) control systems. System reliability further in-
cludes the operational principle of secure operation, which refers to
the ability to steer the system operating state within a distance from
undesirable operating states [27, 21]. Maintaining secure operation
typically is associated with centralised control, for which also avail-
ability of communication functions is relevant, but characterised
simply by availability of individual communication links.

In a distributed control system, reliability requires a combination
of both the physical availability of components, as well as the avail-
ability for interactions via a communication network. In this case,
guaranteeing communication among components becomes a func-
tional requirement, as the overall objective will be fulfilled partially
by each of the components of the distributed control system. The
interpretation of reliability of distributed control systems is therefore
contingent on the interpretation of “reliability" of its communica-
tion patterns, rather than individual communication links. From a
CP-DCS point of view, the ability that a choreographic approach
has at providing guarantees for certain communication-dependent
systems properties is of utmost interest.

It is possible to draw a parallel between CP-DCS and Choreogra-
phies. The concept of control elements directly corrresponds to par-
ticipants in a choreography. Moreover, the separation of concerns
achieved by control layers can be mapped directly to the session
scoping provided in choreographies. Communication aspects of
CP-DCS as categorised in [14], can be modeled using by multiparty
choreographies, considering multiple control layers being executed
at once. Other aspects of the categorisation appear to be orthog-
onal to choreography concepts, such as the domain-specific type
of control objectives and execution context, as well as properties
of the respective distributed control algorithm. While properties
such as progress, liveness, and protocol-fidelity can be considered
basic functional requirements of distributed communication, the
properties availability-by-design, and fault-tolerance directly have
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Figure 1: Choreographic description of the Bully algorithm. ~t
is the shorthand notation for t̃\ti

an effect on reliability. These safety properties will affect each of the
CP-DCS taxonomy categories introduced in Section 2 in a different
way. For example, for distributed control and of the D-V group (de-
terminate / iterative), communication failure of endpoints will lead
to proportional degradation - a failure-aware choreography would
ensure that the experienced degradation is equally proportional. For
a D-H-S, and more importantly, a D-H-P pattern, availability by
design can be expressed. By means of these properties, a quantifi-
cation of the respective reliability properties can be mapped from
communication link reliability rather directly to control function reli-
ability. Utilizing the choreographic methods will therefore facilitate
CP-DCS both the correct-by-construction development methods and
the potential for deterministic qualification of CP-DCS reliability
properties. Choreography-based programming currently offers the
majority of these properties, excepting fault-tolerance.

4.2 Case Study on CP-DCS
In order to exemplify the use of choreographies for CP-DCS, we

give a specification of the Bully Algorithm [13]. Bully is a leader
election algorithm in distributed systems that has already been used
to coordinate the provision of grid services for control elements [24].
Its specification is presented in Figure 4.1, following the syntax and
semantics of the Global Quality Calculus, extended with standard
general and primitive recursion operators [10, 28].



Example 4.1 (Bully Algorithm). The Bully algorithm coordinates
the election of a component as a coordinator in a distributed system.
The set of threads is denoted by t̃, whose elements are ranked using a
unique identification number. The idea is that, after the failure of one
of more of the components in the distributed system, components
will elect the one with the highest identification number. They
do so by performing many-to-one communication actions, such as
broadcast, reduce, and collective selection.

Lines 1–3 describe a normal master-subordinate relation between
the coordinator component and its subordinates. Line 1 creates a
new session k, that will identify the communication among threads.
Sessions are an essential component in the description of dynamic
behaviour of distributed systems. By using them, one can guarantee
that interactions among different components in a distributed system
do not mix, since they belong to different sessions whose identifiers
are generated at runtime. Line 4 presents a collective choice: a
coordinator ti determines the execution of command cmd to all its
peers. Collective operations (selection, broadcast and aggregation)
are parameterised by availability conditions of the present nodes
[33]. In this particular case, the selection is deemed to proceed as
long as all components are available, which is denoted by the ∀
predicate in the communication. Lines 5–19 describe the election
phase: Any node can start a new election by performing a collective
selection to all of its peers. The interaction will deem successful as
long as a threshold is maintained (in this case, that m out the total n
number of components is available). In this way one can ensure that
a minimum amount of components (c.f. the minimum number of
threads according to Byzantine failures) respond. Lines 6 models
message aggregation: all requested components answer with their
identification number. The result will be collected by the sender,
who will compute an aggregation of data received (in this particular
case, it simply computes the the maximum of the values received).
If none of the components has a higher identification number than
the component eliciting the election, this will assume the position of
a new leader. First, he stops the execution of components available
(Line 8), forcing them to perform an election among their peers
(Lines 9–12). These elections serve as step for synchronising all
available components, making them ready to assume a new leader.
Finally, in Lines 14–17 the new leader distributes its identity among
all available components, assuming him as the new coordinator.

The specification in Figure 4.1 presents interesting aspects for
electronic elections. First, it provides a concise specification of the
sequence of messages exchanged among all participants involved.
Second, novel collective operations (broadcast, reduce, collective
selection) allow for the modelling of complex one-to-many and
many-to-one communications. Third, success criteria at each in-
teraction is parameterised with availability conditions, allowing
flexible specifications where some interactions require all compo-
nents, and others do not. Fourth, it explicitly isolates the decision
process pertaining the coordinating and communicating behaviour
of each component, abstracting details regarding the implementation
of each component.

5. CONCLUSIONS AND FUTURE WORK
In this work we have presented how the theory of choreographic

programming can provide guarantees for the development of reliable
distributed control systems from the energy sector. By providing
a formal foundation capable of guaranteeing reliable executions in
the system, we expect to facilitate the transition from the centralised
and decentralised architecture patterns currently used towards dis-
tributed ones, therefore providing a ground where transactional
energy frameworks can build upon. To the best of our knowledge,

this is the first attempt at using a formal account of choreographies
and session type techniques in the electrical sector.

This work also motivates further studies on choreographic pro-
gramming. Moving from failure-awareness towards fault-tolerance
seems like a natural step. For this to happen, further explorations on
frameworks combining Application-based QoS guarantees (needed
for CP-DCS), exceptional behaviour, time and runtime monitoring
are required.
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